SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elser James J.) "

Sökning: WFRF:(Elser James J.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Munke, Anna, et al. (författare)
  • Data Descriptor : Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
  • 2016
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
  •  
3.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
4.
  • Carpenter, Stephen R., et al. (författare)
  • Accelerate Synthesis in Ecology and Environmental Sciences
  • 2009
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 59:8, s. 699-701
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecology is a leading discipline in the synthesis of diverse knowledge. Ecologists have had considerable experience in bringing together diverse, multinational data sets, disciplines, and cultural perspectives to address a wide range of issues in basic and applied science. Now is the time to build on this foundation and invest in ecological synthesis through new national or international programs. While synthesis takes place through many mechanisms, including individual efforts, working groups, and research networks, centers are extraordinarily effective institutional settings for advancing synthesis projects.
  •  
5.
  • Isanta-Navarro, Jana, et al. (författare)
  • Revisiting the growth rate hypothesis : Towards a holistic stoichiometric understanding of growth
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:10, s. 2324-2339
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has found broad but not uniform support in studies across diverse biota and habitats. We synthesise information on how and why the tripartite growth-RNA-P relationship predicted by the GRH may be uncoupled and outline paths for both theoretical and empirical work needed to broaden the working domain of the GRH. We found strong support for growth to RNA (r2 = 0.59) and RNA-P to P (r2 = 0.63) relationships across taxa, but growth to P relationships were relatively weaker (r2 = 0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation in non-RNA pools, inactive ribosomes, translation elongation rates and protein turnover rates), ecological (limitation by resources other than P), and evolutionary (adaptation to different nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the GRH and formalised mathematically to facilitate a predictive understanding of growth.
  •  
6.
  • Domis, Lisette N. De Senerpont, et al. (författare)
  • Plankton dynamics under different climatic conditions in space and time
  • 2013
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 58:3, s. 463-482
  • Forskningsöversikt (refereegranskat)abstract
    • 1.Different components of the climate system have been shown to affect temporal dynamics in natural plankton communities on scales varying from days to years. The seasonal dynamics in temperate lake plankton communities, with emphasis on both physical and biological forcing factors, were captured in the 1980s in a conceptual framework, the Plankton Ecology Group (PEG) model. 2.Taking the PEG model as our starting point, we discuss anticipated changes in seasonal and long-term plankton dynamics and extend this model to other climate regions, particularly polar and tropical latitudes. Based on our improved post-PEG understanding of plankton dynamics, we also evaluate the role of microbial plankton, parasites and fish in governing plankton dynamics and distribution. 3.In polar lakes, there is usually just a single peak in plankton biomass in summer. Lengthening of the growing season under warmer conditions may lead to higher and more prolonged phytoplankton productivity. Climate-induced increases in nutrient loading in these oligotrophic waters may contribute to higher phytoplankton biomass and subsequent higher zooplankton and fish productivity. 4.In temperate lakes, a seasonal pattern with two plankton biomass peaks in spring and summer can shift to one with a single but longer and larger biomass peak as nutrient loading increases, with associated higher populations of zooplanktivorous fish. Climate change will exacerbate these trends by increasing nutrient loading through increased internal nutrient inputs (due to warming) and increased catchment inputs (in the case of more precipitation). 5.In tropical systems, temporal variability in precipitation can be an important driver of the seasonal development of plankton. Increases in precipitation intensity may reset the seasonal dynamics of plankton communities and favour species adapted to highly variable environments. The existing intense predation by fish on larger zooplankters may increase further, resulting in a perennially low zooplankton biomass. 6.Bacteria were not included in the original PEG model. Seasonally, bacteria vary less than the phytoplankton but often follow its patterns, particularly in colder lakes. In warmer lakes, and with future warming, a greater influx of allochthonous carbon may obscure this pattern. 7.Our analyses indicate that the consequences of climate change for plankton dynamics are, to a large extent, system specific, depending on characteristics such as food-web structure and nutrient loading. Indirect effects through nutrient loading may be more important than direct effects of temperature increase, especially for phytoplankton. However, with warming a general picture emerges of increases in bacterivory, greater cyanobacterial dominance and smaller-bodied zooplankton that are more heavily impacted by fish predation.
  •  
7.
  • Metson, Genevieve S., 1988-, et al. (författare)
  • The role of diet in phosphorus demand
  • 2012
  • Ingår i: Environmental Research Letters. - : Institute of Physics (IOP). - 1748-9326. ; 7:4, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 50 years, there have been major changes in human diets, including a global average increase in meat consumption and total calorie intake. We quantified how changes in annual per capita national average diets affected requirements for mined P between 1961 and 2007, starting with the per capita availability of a food crop or animal product and then determining the P needed to grow the product. The global per capita P footprint increased 38% over the 46 yr time period, but there was considerable variability among countries. Phosphorus footprints varied between 0.35 kg P capita −1 yr −1 (DPR Congo, 2007) and 7.64 kg P capita −1 yr −1 (Luxembourg, 2007). Temporal trends also differed among countries; for example, while China’s P footprint increased almost 400% between 1961 and 2007, the footprints of other countries, such as Canada, decreased. Meat consumption was the most important factor affecting P footprints; it accounted for 72% of the global average P footprint. Our results show that dietary shifts are an important component of the human amplification of the global P cycle. These dietary trends present an important challenge for sustainable P management.
  •  
8.
  • Sommer, Ulrich, et al. (författare)
  • Beyond the Plankton Ecology Group (PEG) Model : Mechanisms Driving Plankton Succession
  • 2012
  • Ingår i: Annual Review of Ecology, Evolution and Systematics. - : Annual Reviews. - 1543-592X .- 1545-2069. ; 43, s. 429-448
  • Forskningsöversikt (refereegranskat)abstract
    • The seasonal succession of plankton is an annually repeated process of community assembly during which all major external factors and internal interactions shaping communities can be studied. A quarter of a century ago, the state of this understanding was described by the verbal plankton ecology group (PEG) model. It emphasized the role of physical factors, grazing and nutrient limitation for phytoplankton, and the role of food limitation and fish predation for zooplankton. Although originally targeted at lake ecosystems, it was also adopted by marine plankton ecologists. Since then, a suite of ecological interactions previously underestimated in importance have become research foci: overwintering of key organisms, the microbial food web, parasitism, and food quality as a limiting factor and an extended role of higher order predators. A review of the impact of these novel interactions on plankton seasonal succession reveals limited effects on gross seasonal biomass patterns, but strong effects on species replacements.
  •  
9.
  • Vrede, Tobias, et al. (författare)
  • FUNDAMENTAL CONNECTIONS AMONG ORGANISM C:N:P STOICHIOMETRY, MACROMOLECULAR COMPOSITION, AND GROWTH
  • 2004
  • Ingår i: Ecology. ; 85:5, s. 1217–1229-
  • Tidskriftsartikel (refereegranskat)abstract
    • Whereas it is acknowledged that the C:N:P stoichiometry of consumers and their resources affects both the structure and the function of food webs, and eventually influences broad-scale processes such as global carbon cycles, the mechanistic basis for the variation in stoichiometry has not yet been fully explored. Empirical evidence shows that the specific growth rate is positively related to RNA concentration both between and within taxa in both unicellular and multicellular organisms. Since RNA is rich in P and constitutes a substantial part of the total P in organisms, a high growth rate is also connected with a high P content. We argue that the reason for this pattern is that the growth of all biota is closely linked with their protein synthesis rate, and thus with the concentration of ribosomal RNA. Dynamic energy budget theory supports the positive relationship between RNA and specific growth rate in microorganisms, whereas the predictions concerning multicellulars only partially agrees with the observed pattern. In a simple model of consumer growth, we explore the consequences of various allocation patterns of RNA, protein, carbohydrates/lipids, and other biochemical constituents on organism potential growth rate and C:N:P stoichiometry. According to the model the percentage of N and especially percentage of P per dry mass increases with increasing specific growth rate. Furthermore, the model suggests that macromolecule allocation patterns and thus N:P stoichiometry are allowed to differ substantially at low growth rates whereas the stoichiometry at high growth rates is much more constricted at low N:P. The model fits empirical data reasonably well, but it is also acknowledged that complex life cycles and associated physiological constraints may result in other patterns. We also use a similar approach of modeling organism growth from basic biochemical principles to illustrate fundamental connections among biochemical allocation and C:N stoichiometry in autotroph production, which is based on allocation patterns between carbohydrates and rubisco. Similar to the RNA–protein model, macromolecular composition and C:N ratios are more constrained at high than at low growth rates. The models and the empirical data together suggest that organism growth is tightly linked with the organisms' biochemical and elemental composition. The stoichiometry of growth impinges on nutrient cycles and carbon fluxes at the ecosystem level. Thus, focus on the biological basis of organism C:N:P stoichiometry can mechanistically connect growth strategy and biochemical and cellular mechanisms of biota to major ecological consequences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
van Donk, Ellen (2)
Winder, Monika (2)
Aquila, Andrew (2)
Hajdu, Janos (2)
Seibert, M Marvin (2)
Diaz, Sandra (1)
visa fler...
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Chapin, F. Stuart, I ... (1)
Bond-Lamberty, Ben (1)
Ives, Anthony R. (1)
Kosten, Sarian (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Adrian, Rita (1)
Isaac, Marney (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
Vrede, Tobias (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Lundberg, Per (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Caleman, Carl (1)
Manzoni, Stefano (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Bennett, Elena M. (1)
Dainese, Matteo (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Sierra, Raymond G. (1)
Mancuso, Adrian P. (1)
Wellstein, Camilla (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Graafsma, Heinz (1)
Hirsemann, Helmut (1)
Rillig, Matthias C. (1)
Tappeiner, Ulrike (1)
Erk, Benjamin (1)
Rudenko, Artem (1)
Rolles, Daniel (1)
Roland, Fábio (1)
Huszar, Vera L. M. (1)
visa färre...
Lärosäte
Uppsala universitet (3)
Stockholms universitet (3)
Göteborgs universitet (2)
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
visa fler...
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy