SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eyfjord J E) "

Sökning: WFRF:(Eyfjord J E)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Antoniou, A C, et al. (författare)
  • Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies
  • 2005
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 42:7, s. 602-603
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent report estimated the breast cancer risks in carriers of the three Ashkenazi founder mutations to be higher than previously published estimates derived from population based studies. In an attempt to confirm this, the breast and ovarian cancer risks associated with the three Ashkenazi founder mutations were estimated using families included in a previous meta-analysis of populatrion based studies. The estimated breast cancer risks for each of the founder BRCA1 and BRCA2 mutations were similar to the corresponding estimates based on all BRCA1 or BRCA2 mutations in the meta-analysis. These estimates appear to be consistent with the observed prevalence of the mutations in the Ashkenazi Jewish population.
  •  
10.
  • Antoniou, A. C., et al. (författare)
  • The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions
  • 2008
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 1532-1827 .- 0007-0920. ; 98:8, s. 1457-1466
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple genetic loci confer susceptibility to breast and ovarian cancers. We have previously developed a model (BOADICEA) under which susceptibility to breast cancer is explained by mutations in BRCA1 and BRCA2, as well as by the joint multiplicative effects of many genes ( polygenic component). We have now updated BOADICEA using additional family data from two UK population-based studies of breast cancer and family data from BRCA1 and BRCA2 carriers identified by 22 population-based studies of breast or ovarian cancer. The combined data set includes 2785 families ( 301 BRCA1 positive and 236 BRCA2 positive). Incidences were smoothed using locally weighted regression techniques to avoid large variations between adjacent intervals. A birth cohort effect on the cancer risks was implemented, whereby each individual was assumed to develop cancer according to calendar period-specific incidences. The fitted model predicts that the average breast cancer risks in carriers increase in more recent birth cohorts. For example, the average cumulative breast cancer risk to age 70 years among BRCA1 carriers is 50% for women born in 1920 - 1929 and 58% among women born after 1950. The model was further extended to take into account the risks of male breast, prostate and pancreatic cancer, and to allow for the risk of multiple cancers. BOADICEA can be used to predict carrier probabilities and cancer risks to individuals with any family history, and has been implemented in userfriendly Web-based program(http://www.srl.cam.ac.uk/genepi/boadicea/boadicea_home. html).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy