SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Foiani M.) "

Sökning: WFRF:(Foiani M.)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chelban, V., et al. (författare)
  • PDXK mutations cause polyneuropathy responsive to pyridoxal 5′-phosphate supplementation
  • 2019
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 86:2, s. 225-240
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. Methods: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. Results: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5′-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. Interpretation: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225–240. © 2019 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
  •  
2.
  •  
3.
  • Kapoor, M., et al. (författare)
  • Plasma neurofilament light chain concentration is increased and correlates with the severity of neuropathy in hereditary transthyretin amyloidosis
  • 2019
  • Ingår i: Journal of the Peripheral Nervous System. - : Wiley. - 1085-9489 .- 1529-8027. ; 24:4, s. 314-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary transthyretin amyloidosis (ATTRm) causes a disabling peripheral neuropathy as part of a multisystem disorder. The recent development of highly effective gene silencing therapies has highlighted the need for effective biomarkers of disease activity to guide the decision of when to start and stop treatment. In this study, we measured plasma neurofilament light chain (pNfL) concentration in 73 patients with ATTR and found that pNfL was significantly raised in ATTRm patients with peripheral neuropathy compared to healthy controls. Furthermore, pNFL correlated with disease severity as defined by established clinical outcome measures in patients for whom this information was available. These findings suggest a potential role of pNfL in monitoring disease activity and progression in ATTRm patients.
  •  
4.
  •  
5.
  •  
6.
  • Heller, C, et al. (författare)
  • Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia
  • 2020
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 91:3, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker.MethodsPlasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman’s correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures.ResultsPlasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, –61.3 to 54.6), MAPT mutations (12.7, –33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe.ConclusionsRaised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
  •  
7.
  • Kapoor, M., et al. (författare)
  • Association of plasma neurofilament light chain with disease activity in chronic inflammatory demyelinating polyradiculoneuropathy
  • 2022
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101 .- 1468-1331. ; 29:11, s. 3347-3357
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose This study was undertaken to explore associations between plasma neurofilament light chain (pNfL) concentration (pg/ml) and disease activity in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and examine the usefulness of pNfL concentrations in determining disease remission. Methods We examined pNfL concentrations in treatment-naive CIDP patients (n = 10) before and after intravenous immunoglobulin (IVIg) induction treatment, in pNfL concentrations in patients on maintenance IVIg treatment who had stable (n = 15) versus unstable disease (n = 9), and in clinically stable IVIg-treated patients (n = 10) in whom we suspended IVIg to determine disease activity and ongoing need for maintenance IVIg. pNfL concentrations in an age-matched healthy control group were measured for comparison. Results Among treatment-naive patients, pNfL concentration was higher in patients before IVIg treatment than healthy controls and subsequently reduced to be comparable to control group values after IVIg induction. Among CIDP patients on IVIg treatment, pNfL concentration was significantly higher in unstable patients than stable patients. A pNFL concentration > 16.6 pg/ml distinguished unstable treated CIDP from stable treated CIDP (sensitivity = 86.7%, specificity = 66.7%, area under receiver operating characteristic curve = 0.73). Among the treatment withdrawal group, there was a statistically significant correlation between pNfL concentration at time of IVIg withdrawal and the likelihood of relapse (r = 0.72, p < 0.05), suggesting an association of higher pNfL concentration with active disease. Conclusions pNfL concentrations may be a sensitive, clinically useful biomarker in assessing subclinical disease activity.
  •  
8.
  • Kosar, M, et al. (författare)
  • The human nucleoporin Tpr protects cells from RNA-mediated replication stress
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 3937-
  • Tidskriftsartikel (refereegranskat)abstract
    • Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
  •  
9.
  • Woollacott, I. O. C., et al. (författare)
  • Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup
  • 2018
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Reliable biomarkers of frontotemporal dementia (FTD) are currently lacking. FTD may be associated with chronic immune dysfunction, microglial activation and raised inflammatory markers, particularly in progranulin (GRN) mutation carriers. Levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) are elevated in Alzheimer's disease (AD), but they have not been fully explored in FTD. Methods: We investigated whether cerebrospinal fluid (CSF) sTREM2 levels differ between FTD and controls, across different clinical and genetic subtypes of FTD, or between individuals with FTD due to AD versus non-AD pathology (based on CSF neurodegenerative biomarkers). We also assessed relationships between CSF sTREM2 and other CSF biomarkers (total tau [T-tau], tau phosphorylated at position threonine-181 [P-tau] and beta-amyloid 1-42 [A beta 42]) and age and disease duration. Biomarker levels were measured using immunoassays in 17 healthy controls and 64 patients with FTD (behavioural variant FTD, n = 20; primary progressive aphasia, n = 44). Ten of 64 had familial FTD, with mutations in GRN (n = 3), MAPT (n = 4), or C9orf72 (n = 3). Fifteen of 64 had neurodegenerative biomarkers consistent with AD pathology (11 of whom had logopenic variant PPA). Levels were compared using multivariable linear regressions. Results: CSF sTREM2 levels did not differ between FTD and controls or between clinical subgroups. However, GRN mutation carriers had higher levels than controls (mean ([SD] = 9.7 [2.9] vs. 6.8 [1.6] ng/ml; P= 0.028) and MAPT (3.9 [1.5] ng/ml; P= 0.003] or C9orf72 [4.6 [1.8] ng/ml; P=0.006) mutation carriers. Individuals with AD-like CSF had higher sTREM2 levels than those with non-AD-like CSF (9.0 [3.6] vs. 6.9 [3.0] ng/ml; P = 0.029). CSF sTREM2 levels were associated with T-tau levels in control and FTD groups and also with P-tau in those with FTD and AD-like CSF. CSF sTREM2 levels were influenced by both age and disease duration in FTD. Conclusions: Although CSF sTREM2 levels are not raised in FTD overall or in a particular clinical subtype of FTD, levels are raised in familial FTD associated with GRN mutations and in FTD syndromes due to AD pathology. Because CSF sTREM2 levels correlate with a marker of neuronal injury (T-tau), sTREM2 should be explored as a biomarker of disease intensity in future longitudinal studies of FTD.
  •  
10.
  • Woollacott, I. O. C., et al. (författare)
  • Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype
  • 2020
  • Ingår i: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 49:1, s. 56-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer's disease (AD) but have not been explored in detail across the spectrum of FTD.Methods:We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD syndrome due to AD versus non-AD (frontotemporal lobar degeneration, FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen healthy controls and 64 people with FTD (behavioural variant FTD,n= 20; primary progressive aphasia [PPA],n= 44: nfvPPA,n= 16, svPPA,n= 11, lvPPA,n= 14, PPA-NOS,n= 3) were included. 10/64 had familial FTD, with mutations inGRN(n= 3),MAPT(n= 4), orC9orf72(n= 3). 15/64 had neurodegenerative biomarkers consistent with AD pathology. Levels were measured by immunoassay and compared using multiple linear regressions. We also examined relationships of YKL-40 and chitotriosidase with CSF total tau (T-tau), phosphorylated tau 181 (P-tau) and beta-amyloid 1-42 (A beta 42), with each other, and with age and disease du-ration.Results:CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls.GRNmutation carriers had higher levels of both proteins than controls andC9orf72expansion carriers, and YKL-40 was higher inMAPTmutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and A beta 42, and with each other, depending on clinical syndrome and underlying pathology. CSF YKL-40 but not chitotriosidase was associated with age, but not disease duration.Conclusion:CSF YKL-40 and chitotriosidase levels are increased in individuals with clinical FTD syndromes, particularly due to AD pathology. In a preliminary analysis of genetic groups, levels of both proteins are found to be highly elevated in FTD due toGRNmutations, while YKL-40 is increased in individuals withMAPTmutations. As glia-derived protein levels generally correlate with T-tau and P-tau levels, they may reflect the glial response to neurodegeneration in FTLD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy