SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frau F) "

Sökning: WFRF:(Frau F)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Tidskriftsartikel (refereegranskat)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
3.
  •  
4.
  •  
5.
  • Wilman, H. R., et al. (författare)
  • Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
  • 2019
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 71:3, s. 594-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. Results: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p <5 × 10−8). The 2 HFE variants account for ∼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. Conclusion: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. Lay summary: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.
  •  
6.
  • Yang, Jian, et al. (författare)
  • FTO genotype is associated with phenotypic variability of body mass index
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 490:7419, s. 267-272
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evidence across several species for genetic control of phenotypic variation of complex traits(1-4), such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using similar to 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)(5-7), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of similar to 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation(9,10). Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
  •  
7.
  • Bar, N., et al. (författare)
  • A reference map of potential determinants for the human serum metabolome
  • 2020
  • Ingår i: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 588:7836, s. 135-140
  • Tidskriftsartikel (refereegranskat)abstract
    • The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. 
  •  
8.
  •  
9.
  • Chittani, Martina, et al. (författare)
  • TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives.
  • 2015
  • Ingår i: Journal of Hypertension. - 1473-5598. ; 33:6, s. 1301-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Thiazide diuretics have been recommended as a first-line antihypertensive treatment, although the choice of 'the right drug in the individual essential hypertensive patient' remains still empirical. Essential hypertension is a complex, polygenic disease derived from the interaction of patient's genetic background with the environment. Pharmacogenomics could be a useful tool to pinpoint gene variants involved in antihypertensive drug response, thus optimizing therapeutic advantages and minimizing side effects.
  •  
10.
  • Salvi, Erika, et al. (författare)
  • Genomewide Association Study Using a High-Density Single Nucleotide Polymorphism Array and Case-Control Design Identifies a Novel Essential Hypertension Susceptibility Locus in the Promoter Region of Endothelial NO Synthase.
  • 2012
  • Ingår i: Hypertension. - 1524-4563. ; 59:2, s. 248-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy