SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friberg F) "

Sökning: WFRF:(Friberg F)

  • Resultat 1-10 av 177
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Kloprogge, F., et al. (författare)
  • Artemether-lumefantrine dosing for malaria treatment in young children and pregnant women: A pharmacokinetic-pharmacodynamic meta-analysis
  • 2018
  • Ingår i: Plos Medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 15:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations. A search in PubMed, Embase, ClinicalTrials. gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing < 15 kg and 15-25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7. Our findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.
  •  
3.
  • Nolte, I. M., et al. (författare)
  • Genetic loci associated with heart rate variability and their effects on cardiac disease risk
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization.
  •  
4.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
5.
  • Musuamba, F. T., et al. (författare)
  • Advanced Methods for Dose and Regimen Finding During Drug Development : Summary of the EMA/EFPIA Workshop on Dose Finding (London 4-5 December 2014)
  • 2017
  • Ingår i: CPT. - : Wiley. - 2163-8306. ; 6:7, s. 418-429
  • Tidskriftsartikel (refereegranskat)abstract
    • Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose finding (London 4-5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators were presented. These methods are described in the present report: they include five advanced methods for data analysis (empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP-Mod, and model averaging) and three methods for study design optimization (Fisher information matrix (FIM)-based methods, clinical trial simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well-designed dosefinding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale.
  •  
6.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
7.
  • Georgiev, Boris, et al. (författare)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
8.
  • Roelofs, F., et al. (författare)
  • Polarimetric Geometric Modeling for mm-VLBI Observations of Black Holes
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.
  •  
9.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈|v|〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (|vint| < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
  •  
10.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a "variability noise budget" in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of similar to 50 mu as, consistent with the expected "shadow" of a 4 x 10(6) M (circle dot) black hole in the Galactic center located at a distance of 8 kpc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 177
Typ av publikation
tidskriftsartikel (130)
konferensbidrag (35)
bokkapitel (5)
samlingsverk (redaktörskap) (2)
doktorsavhandling (2)
bok (1)
visa fler...
annan publikation (1)
forskningsöversikt (1)
visa färre...
Typ av innehåll
refereegranskat (132)
övrigt vetenskapligt/konstnärligt (45)
Författare/redaktör
Byun, Do Young (41)
Kim, Jongsoo (40)
Akiyama, Kazunori (36)
Alberdi, Antxon (36)
Alef, Walter (36)
Barrett, John (36)
visa fler...
Bintley, Dan (36)
Blackburn, Lindy (36)
Brissenden, Roger (36)
Britzen, Silke (36)
Bronzwaer, Thomas (36)
Chatterjee, Koushik (36)
Chen, Ming Tang (36)
Chen, Yongjun (36)
Cordes, James M. (36)
Cui, Yuzhu (36)
Davelaar, Jordy (36)
Dempsey, Jessica (36)
Desvignes, Gregory (36)
Eatough, Ralph P. (36)
Gammie, Charles F. (36)
Gentaz, Olivier (36)
Gu, Minfeng (36)
Koch, Patrick M. (36)
Ball, David (35)
Broderick, Avery E. (35)
Chan, Chi Kwan (35)
Christian, Pierre (35)
Conway, John, 1963 (35)
Fromm, Christian M. (35)
Garcia, Roberto (35)
Hecht, Michael H. (35)
Ho, Luis C. (35)
Huang, Chih Wei L. (35)
Huang, Lei (35)
Inoue, Makoto (35)
James, David J. (35)
Kim, Jae-Young (34)
Galison, Peter (34)
Georgiev, Boris (34)
Jeter, Britton (34)
Johnson, Michael D. (34)
Jung, Taehyun (34)
Karami, Mansour (34)
Kawashima, Tomohisa (34)
Koay, Jun Yi (34)
Dexter, Jason (33)
Jannuzi, Buell T. (33)
Jiang, Wu (33)
Kim, Junhan (33)
visa färre...
Lärosäte
Karolinska Institutet (63)
Chalmers tekniska högskola (42)
Uppsala universitet (28)
Lunds universitet (22)
Göteborgs universitet (17)
Marie Cederschiöld högskola (9)
visa fler...
Kungliga Tekniska Högskolan (8)
Umeå universitet (5)
Linköpings universitet (5)
Örebro universitet (2)
Handelshögskolan i Stockholm (2)
Högskolan Kristianstad (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (176)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (58)
Medicin och hälsovetenskap (45)
Teknik (10)
Samhällsvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy