SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Götz D.) "

Sökning: WFRF:(Götz D.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Cox, D. M., et al. (författare)
  • Spectroscopy along flerovium decay chains. II. Fine structure in odd-A 289Fl
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 107:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Fifteen correlated α-decay chains starting from the odd-A superheavy nucleus 289Fl were observed following the fusion-evaporation reaction 48Ca+244Pu. The results call for at least two parallel α-decay sequences starting from at least two different states of 289Fl. This implies that close-lying levels in nuclei along these chains have quite different spin-parity assignments. Further, observed α-electron and α-photon coincidences, as well as the α-decay fine structure along the decay chains, suggest a change in the ground-state spin assignment between 285Cn and 281Ds. Our experimental results, on the excited level structure of the heaviest odd-N nuclei to date, provide a direct testing ground for theory. This is illustrated by comparison with new nuclear structure calculations based on the symmetry-conserving configuration mixing theory.
  •  
4.
  • Såmark-Roth, A., et al. (författare)
  • Spectroscopy along flerovium decay chains. III. Details on experiment, analysis, 282Cn, and spontaneous fission branches
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 107:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Flerovium isotopes (element Z = 114) were produced in the fusion-evaporation reactions 48Ca+242,244Pu and studied with an upgraded TASISpec decay station placed in the focal plane of the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Twenty-nine flerovium decay chains were identified by means of correlated implantation, α decay, and spontaneous fission events. Data analysis aspects and statistical assessments, primarily based on measured rates of various events, which laid the foundation for the comprehensive spectroscopic information on the flerovium decay chains, are presented in detail. Various decay scenarios of an excited state observed in 282Cn are examined in depth with the help of GEANT4 simulations and assessed by predictions of beyond mean-field calculations including triaxial shape degrees of freedom. Previous, revised, and newly derived fission probabilities of even-even superheavy nuclei are compared with various theoretical predictions.
  •  
5.
  • Yakushev, A., et al. (författare)
  • On the adsorption and reactivity of element 114, flerovium
  • 2022
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly volatile and the least reactive member of group 14. Our experimental observations suggest that Fl exhibits lower reactivity towards Au than the volatile metal Hg, but higher reactivity than the noble gas Rn.
  •  
6.
  • Yakushev, A., et al. (författare)
  • First Study on Nihonium (Nh, Element 113) Chemistry at TASCA
  • 2021
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nihonium (Nh, element 113) and flerovium (Fl, element 114) are the first superheavy elements in which the 7p shell is occupied. High volatility and inertness were predicted for Fl due to the strong relativistic stabilization of the closed 7p1/2 sub-shell, which originates from a large spin-orbit splitting between the 7p1/2 and 7p3/2 orbitals. One unpaired electron in the outermost 7p1/2 sub-shell in Nh is expected to give rise to a higher chemical reactivity. Theoretical predictions of Nh reactivity are discussed, along with results of the first experimental attempts to study Nh chemistry in the gas phase. The experimental observations verify a higher chemical reactivity of Nh atoms compared to its neighbor Fl and call for the development of advanced setups. First tests of a newly developed detection device miniCOMPACT with highly reactive Fr isotopes assure that effective chemical studies of Nh are within reach.
  •  
7.
  • Cox, D. M., et al. (författare)
  • Spectroscopic Tools Applied to Flerovium Decay Chains
  • 2020
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 1643
  • Tidskriftsartikel (refereegranskat)abstract
    • An upgraded TASISpec setup, with the addition of a veto DSSD and the new Compex detector-germanium array, has been employed with the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, to study flerovium (element 114) decay chains. The detector upgrades along with development of new analytical techniques have improved the sensitivity of the TASISpec setup for measuring α-photon coincidences. These improvements have been assessed with test reactions. The reaction 48Ca+206,207Pb was used for verification of experimental parameters such as transmission to implantation DSSD and target-segment to α-decay correlations. The reaction 48Ca+ natHf was used to produce several short-lived nuclei with multiple-α decay chains to investigate pile-up event deconvolution.
  •  
8.
  • Såmark-Roth, Anton, et al. (författare)
  • Spectroscopy along flerovium decay chains: Discovery of 280Ds and an excited state in 282Cn
  • 2021
  • Ingår i: Physical Review Letters. - 1079-7114. ; 126:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions 48Ca+242Pu and 48Ca+244Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to 286Fl and 288Fl, respectively. A prompt coincidence between a 9.60(1)-MeV α-particle event and a 0.36(1)-MeV conversion electron marked the first observation of an excited state in an even-even isotope of the heaviest man-made elements, namely 282Cn. Spectroscopy of 288Fl decay chains fixed Qα=10.06(1) MeV. In one case, a Qα=9.46(1)-MeV decay from 284Cn into 280Ds was observed, with 280Ds fissioning after only 518 μs. The impact of these findings, aggregated with existing data on decay chains of 286,288Fl, on the size of an anticipated shell gap at proton number Z=114 is discussed in light of predictions from two beyond-mean-field calculations, which take into account triaxial deformation.
  •  
9.
  • Block, Michael, et al. (författare)
  • Research of the NUSTAR departments : SHE departments and HIM SHE section
  • 2020
  • Ingår i: GSI-FAIR Scientific Report 2019 : An overview of the 2019 achievements in science and technology - An overview of the 2019 achievements in science and technology. ; , s. 53-59
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The SHE departments devoted to the research of superheavy elements, operate the recoil separators SHIP and TASCA and their ancillary installations including SHIPTRAP and a laser spectroscopy setup at SHIP as well as chemistry and nuclear spectroscopy setups at TASCA. In 2019, the activities at GSI focused on the UNILAC beamtime within the FAIR Phase-0 program and on the analysis of data obtained in prior beamtimes. At HIM, the advancement of actinide sample preparation, manipulation, and characterization for various applications was most central. In addition, technical developments, for example for single-ion mass measurements, have been performed.
  •  
10.
  • Giacoppo, F., et al. (författare)
  • Recent upgrades of the SHIPTRAP setup : On the finish line towards direct mass spectroscopy of superheavy elements
  • 2017
  • Ingår i: Acta Physica Polonica B. - 0587-4254. ; 48:3, s. 423-429
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102; 103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy