SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gagen M.) "

Sökning: WFRF:(Gagen M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McCarroll, D., et al. (författare)
  • A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe
  • 2013
  • Ingår i: Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 23:4, s. 471-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Combining nine tree growth proxies from four sites, from the west coast of Norway to the Kola Peninsula of NW Russia, provides a well replicated (> 100 annual measurements per year) mean index of tree growth over the last 1200 years that represents the growth of much of the northern pine timberline forests of northern Fennoscandia. The simple mean of the nine series, z-scored over their common period, correlates strongly with mean June to August temperature averaged over this region (r = 0.81), allowing reconstructions of summer temperature based on regression and variance scaling. The reconstructions correlate significantly with gridded summer temperatures across the whole of Fennoscandia, extending north across Svalbard and south into Denmark. Uncertainty in the reconstructions is estimated by combining the uncertainty in mean tree growth with the uncertainty in the regression models. Over the last seven centuries the uncertainty is < 4.5% higher than in the 20th century, and reaches a maximum of 12% above recent levels during the 10th century. The results suggest that the 20th century was the warmest of the last 1200 years, but that it was not significantly different from the 11th century. The coldest century was the 17th. The impact of volcanic eruptions is clear, and a delayed recovery from pairs or multiple eruptions suggests the presence of some positive feedback mechanism. There is no clear and consistent link between northern Fennoscandian summer temperatures and solar forcing.
  •  
2.
  • Charpentier Ljungqvist, Fredrik, et al. (författare)
  • European warm-season temperature and hydroclimate since 850 CE
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The long-term relationship between temperature and hydroclimate has remained uncertain due to the short length of instrumental measurements and inconsistent results from climate model simulations. This lack of understanding is particularly critical with regard to projected drought and flood risks. Here we assess warm-season co-variability patterns between temperature and hydroclimate over Europe back to 850 CE using instrumental measurements, tree-ring based reconstructions, and climate model simulations. We find that the temperature-hydroclimate relationship in both the instrumental and reconstructed data turns more positive at lower frequencies, but less so in model simulations, with a dipole emerging between positive (warm and wet) and negative (warm and dry) associations in northern and southern Europe, respectively. Compared to instrumental data, models reveal a more negative co-variability across all timescales, while reconstructions exhibit a more positive co-variability. Despite the observed differences in the temperature-hydroclimate co-variability patterns in instrumental, reconstructed and model simulated data, we find that all data types share relatively similar phase-relationships between temperature and hydroclimate, indicating the common influence of external forcing. The co-variability between temperature and soil moisture in the model simulations is overestimated, implying a possible overestimation of temperature-driven future drought risks.
  •  
3.
  • Luterbacher, J., et al. (författare)
  • European summer temperatures since Roman times
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial context is criticalwhen assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatiotemporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951-2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986-2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850-2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.
  •  
4.
  • Bodin, Per, et al. (författare)
  • Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (δ(13) C): implications for assessing physiological forcing
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 19:6, s. 1709-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate modelling of long-term changes in plant stomatal functioning is vital to global climate change studies because changes in evapotranspiration influence temperature via physiological forcing of the climate. Various stomatal models are included in land surface schemes, but their robustness over longer timescales is difficult to validate. We compare the performance of three stomatal models, varying in their degree of complexity, and coupled to a land surface model. This is done by simulating the carbon isotope ratio of tree leaves (δ(13) Cleaf ) over a period of 53 years, and comparing the results with carbon isotope ratios obtained from tree rings (δ(13) Cstem ) measured at six sites in northern Europe. All three stomatal models fail to capture the observed inter-annual variability in the measured δ(13) Cstem time series. However, the Soil-Plant-Atmosphere (SPA) model performs significantly better than the Ball-Berry (BB) or COX models when tested for goodness of fit against measured δ(13) Cstem . The δ(13) Cleaf time series simulated using the SPA model are significantly positively correlated (p < 0.05) with measured results over the full time period tested, at all six sites. The SPA model underestimates inter-annual variability measured in δ(13) Cstem , but is no worse than the BB model and significantly better than the COX model. The inability of current models to adequately replicate changes in stomatal response to rising levels of CO2 concentrations, and thus to quantify the associated physiological forcing, warrants further investigation. © 2013 Blackwell Publishing Ltd.
  •  
5.
  • Saurer, Matthias, et al. (författare)
  • Spatial variability and temporal trends in water-use efficiency of European forests
  • 2014
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 20:12, s. 3700-3712
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy