SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gallo Rosso A.) "

Sökning: WFRF:(Gallo Rosso A.)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aprile, E., et al. (författare)
  • Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T2νECEC1/2=(1.1±0.2stat±0.1sys)×1022yr with a 0.87 kg yr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16 kg yr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T0νββ1/2>1.2×1024 yr at 90%CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T0νββ1/2>2.1×1025 yr at 90%CL, corresponding to an effective Majorana mass range of ⟨mββ⟩<(0.19–0.59)eV/c2.
  •  
2.
  • Aprile, E., et al. (författare)
  • The XENON1T dark matter experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
3.
  • Aprile, E., et al. (författare)
  • First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
  •  
4.
  • Aprile, E., et al. (författare)
  • Search for New Physics in Electronic Recoil Data from XENONnT
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3)  events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
  •  
5.
  • Aalbers, J., et al. (författare)
  • DARWIN : towards the ultimate dark matter detector
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c(2), such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions,galactic axion-like particles and the neutrinoless double-beta decay of Xe-136, as well as measure the low-energy solar neutrino flux with <1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.
  •  
6.
  • Aprile, E., et al. (författare)
  • Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 x 10(-42) cm(2) at 30 GeV/c(2) and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
  •  
7.
  • Aprile, E., et al. (författare)
  • Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg x 224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keV(nr). The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.
  •  
8.
  • Aprile, E., et al. (författare)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
9.
  • Aprile, E., et al. (författare)
  • Light Dark Matter Search with Ionization Signals in XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 123:25
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 +/- 3) tonne day. Above similar to 0.4 keV(ee), we observe <1 event/(tonne day keV(ee)), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m(chi) within 3-6 GeV/c(2), DM-electron scattering for m(chi) > 30 MeV/c(2), and absorption of dark photons and axionlike particles for m(chi) within 0.186-1 keV/c(2).
  •  
10.
  • Aprile, E., et al. (författare)
  • Observation of two-neutrino double electron capture in 124Xe with XENON1T
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 568:7753, s. 532-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude. Until now, indications of 2νECEC decays have only been seen for two isotopes, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance. The 2νECEC half-life is an important observable for nuclear structure models and its measurement represents a meaningful step in the search for neutrinoless double electron capture—the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy