SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghisletta Paolo) "

Sökning: WFRF:(Ghisletta Paolo)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fjell, Anders M., et al. (författare)
  • Is short sleep bad for the brain? : Brain structure and cognitive function in short sleepers
  • 2023
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 43:28, s. 5241-5250
  • Tidskriftsartikel (refereegranskat)abstract
    • Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT: Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.
  •  
2.
  • Fjell, Anders M., et al. (författare)
  • No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy
  • 2023
  • Ingår i: Nature Human Behaviour. - : Springer Nature. - 2397-3374. ; 7:11, s. 2008-2022
  • Tidskriftsartikel (refereegranskat)abstract
    • Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration—which is shorter than current recommendations.
  •  
3.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
4.
  • Ghisletta, Paolo, et al. (författare)
  • On the use of growth models to study normal cognitive aging
  • 2020
  • Ingår i: International Journal of Behavioral Development. - : SAGE Publications. - 0165-0254 .- 1464-0651. ; 44:1, s. 88-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth models (GM) of the mixed-effects and latent curve varieties have become popular methodological tools in lifespan research. One of the major advantages of GM is their flexibility in studying individual differences in change. We scrutinized the change functions of GM used in five years of publications on cognitive aging. Of the 162 publications that we identified, 88% test linear or quadratic polynomials, and fewer than 5% apply functions that are nonlinear in their parameters, such as exponential decline. This apparent bias in favor of polynomial decomposition calls for exploring what conclusions about individual differences in change are likely to be drawn if one applies linear or quadratic GMs to data simulated under a conceptually and empirically plausible model of exponential cognitive decline from adulthood to old age. Hence, we set up a simulation that manipulated the rate of exponential decline, measurement reliability, number of occasions, interval width, and sample size. True rate of decline and interval width influenced results strongly, number of occasions and measurement reliability exerted a moderate effect, and the effects of sample size appeared relatively minor. Critically, our results show that fit statistics generally do not differentiate misspecified linear or quadratic models from the true exponential model. Moreover, power to detect variance in change for the linear and quadratic GMs is low, and estimates of individual differences in level and change can be highly biased by model misspecification. We encourage researchers to also consider plausible nonlinear change functions when studying behavioral development across the lifespan.
  •  
5.
  • Ghisletta, Paolo, et al. (författare)
  • The Val/Met Polymorphism of the Brain-Derived Neurotrophic Factor (BDNF) Gene Predicts Decline in Perceptual Speed in Older Adults
  • 2014
  • Ingår i: Psychology and Aging. - : American Psychological Association (APA). - 0882-7974 .- 1939-1498. ; 29:2, s. 384-392
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain-derived neurotrophic factor (BDNF) promotes activity-dependent synaptic plasticity, and contributes to learning and memory. We investigated whether a common Val66Met missense polymorphism (rs6265) of the BDNF gene is associated with individual differences in cognitive decline (marked by perceptual speed) in old age. A total of 376 participants of the Berlin Aging Study, with a mean age of 83.9 years at first occasion, were assessed longitudinally up to 11 times across more than 13 years on the Digit-Letter task. Met carriers (n = 123, 34%) showed steeper linear decline than Val homozygotes (n = 239, 66%); the corresponding contrast explained 2.20% of the variance in change in the entire sample, and 3.41% after excluding individuals at risk for dementia. These effects were not moderated by sex or socioeconomic status. Results are consistent with the hypothesis that normal aging magnifies the effects of common genetic variation on cognitive functioning.
  •  
6.
  • Lövdén, Martin, 1972, et al. (författare)
  • No moderating influence of education on the association between changes in hippocampus volume and memory performance in aging
  • 2023
  • Ingår i: Aging Brain. - : Elsevier. - 2589-9589. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Contemporary accounts of factors that may modify the risk for age-related neurocognitive disorders highlight education and its contribution to a cognitive reserve. By this view, individuals with higher educational attainment should show weaker associations between changes in brain and cognition than individuals with lower educational attainment. We tested this prediction in longitudinal data on hippocampus volume and episodic memory from 708 middle-aged and older individuals using local structural equation modeling. This technique does not require categorization of years of education and does not constrain the shape of relationships, thereby maximizing the chances of revealing an effect of education on the hippocampus-memory association. The results showed that the data were plausible under the assumption that there was no influence of education on the association between change in episodic memory and change in hippocampus volume. Restricting the sample to individuals with elevated genetic risk for dementia (APOE ε4 carriers) did not change these results. We conclude that the influence of education on changes in episodic memory and hippocampus volume is inconsistent with predictions by the cognitive reserve theory.
  •  
7.
  • Nyberg, Lars, et al. (författare)
  • Educational attainment does not influence brain aging
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging.
  •  
8.
  • Nyberg, Lars, 1966-, et al. (författare)
  • Individual differences in brain aging : heterogeneity in cortico-hippocampal but not caudate atrophy rates
  • 2023
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 33:9, s. 5075-5081
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.
  •  
9.
  • Persson, Ninni, et al. (författare)
  • Regional brain shrinkage and change in cognitive performance over two years : The bidirectional influences of the brain and cognitive reserve factors
  • 2016
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 126, s. 15-26
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined relationships between regional brain shrinkage and changes in cognitive performance, while taking into account the influence of age, vascular risk, Apolipoprotein E variant and socioeconomic status. Regional brain volumes and cognitive performance were assessed in 167 healthy adults (age 19-79 at baseline), 90 of whom returned for the follow-up after two years. Brain volumes were measured in six regions of interest (ROIs): lateral prefrontal cortex (LPFC), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), cerebellar hemispheres (CbH), and primary visual cortex (VC), and cognitive performance was evaluated in three domains: episodic memory (EM), fluid intelligence (Gf), and vocabulary (V). Average volume loss was observed in Hc, PhG and CbH, but reliable individual differences were noted in all examined ROIs. Average positive change was observed in EM and V performance but not in Gf scores, yet only the last evidenced individual differences in change. We observed reciprocal influences among neuroanatomical and cognitive variables. Larger brain volumes at baseline predicted greater individual gains in Gf, but differences in LPFC volume change were in part explained by baseline level of cognitive performance. In one region (PFw), individual change in volume was coupled with change in Gf. Larger initial brain volumes did not predict slower shrinkage. The results underscore the complex role of brain maintenance and cognitive reserve in adult development.
  •  
10.
  • Walhovd, Kristine B., et al. (författare)
  • Brain aging differs with cognitive ability regardless of education
  • 2022
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20–88 years, followed-up for up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Ghisletta, Paolo (11)
Lindenberger, Ulman (8)
Bartrés-Faz, David (8)
Fjell, Anders M. (8)
Walhovd, Kristine B. (8)
Nyberg, Lars, 1966- (7)
visa fler...
Brandmaier, Andreas ... (7)
Drevon, Christian A. (7)
Ebmeier, Klaus P. (7)
Boraxbekk, Carl-Joha ... (6)
Sørensen, Øystein (6)
Kühn, Simone (6)
Madsen, Kathrine Ska ... (5)
Solé-Padullés, Crist ... (5)
Amlien, Inge K. (5)
Zsoldos, Eniko (4)
Pudas, Sara, Docent, ... (4)
Bertram, Lars (4)
Baaré, William F.C. (4)
Mowinckel, Athanasia ... (4)
Vidal-Piñeiro, Didac (4)
Wang, Yunpeng (4)
Kievit, Rogier A. (4)
Watne, Leiv Otto (3)
Suri, Sana (3)
Demuth, Ilja (3)
Kievit, Rogier (3)
Wagner, Gerd (3)
Lundquist, Anders, 1 ... (2)
Penninx, Brenda (2)
Düzel, Sandra (2)
Knights, Ethan (2)
Plachti, Anna (2)
Demnitz, Naiara (2)
Sexton, Claire E. (2)
Andersson, Micael (1)
Nyberg, Lars (1)
Ebmeier, Klaus (1)
Nilsson, Lars-Göran (1)
Bäckman, Lars (1)
Lyngstad, Torkild Ho ... (1)
Penninx, Brenda W J ... (1)
Liu, Tian (1)
Nawijn, Laura (1)
von Oertzen, Timo (1)
Lövdén, Martin, 1972 ... (1)
Idland, Ane Victoria (1)
Gerstorf, Denis (1)
Buchmann, Nikolaus (1)
Kietzmann, Tim C. (1)
visa färre...
Lärosäte
Umeå universitet (8)
Stockholms universitet (3)
Karolinska Institutet (2)
Göteborgs universitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Samhällsvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy