SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gilmore Gerard) "

Sökning: WFRF:(Gilmore Gerard)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hawarden, Timothy G., et al. (författare)
  • Critical science with the largest telescopes: science drivers for a 100m ground-based optical-IR telescope
  • 2003
  • Ingår i: Future Giant Telescopes (Proceedings of the SPIE). - : SPIE. - 081944619X ; 4840, s. 299-308
  • Konferensbidrag (refereegranskat)abstract
    • Extremely large filled-aperture ground-based optical-IR telescopes, or ELTs, ranging from 20 to 100m in diameter, are now being proposed. The all-important choice of the aperture must clearly be driven by the potential science offered. We here highlight science goals from the Leiden Workshop in May 2001 suggesting that for certain critical observations the largest possible aperture - assumed to be 100m (theproposed European OverWhelmingly Large telescope (OWL) - is strongly tobe desired. Examples from a long list include: COSMOLOGY: Identifying the first sources of ionisation in the universe, out to z >=14 Identifying and studying the first generation of dusty galaxies More speculatively, observing the formation of the laws of physics, via the evolution of the fundamental physical contants in the very early Universe, by high-resolution spectroscopy of very distant quasars. NEARER GALAXIES: Determining detailed star-formation histories of galaxies out to the Virtgo Cluster, and hence for all major galaxy types (not just those available close to the Local Group of galaxies). THE SOLAR SYSTEM: A 100-m telescope would do the work of a flotilla of fly-by space probes for investigations ranging from the evolution ofplanetary sutfaces and atmospheres to detailed surface spectroscopy of Kuiper Belt Objects. (Such studies could easily occupy it full-time.) EARTHLIKE PLANETS OF NEARBY STARS: A prospect so exciting as perhaps to justify the 100-m telescope on its own, is that of the direct detectionof earthlike planets of solar-type stars by imaging, out to at least 25 parsecs (80 light years) from the sun, followed by spectroscopic and photometric searches for the signature of life on the surfaces of nearer examples.
  •  
2.
  • Koposov, Sergey E., et al. (författare)
  • Kinematics and chemistry of recently discovered Reticulum 2 and Horologium 1 dwarf galaxies
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on VLT/GIRAFFE spectra of stars in two recently discovered ultra-faint satellites, Reticulum 2 and Horologium 1, obtained as part of the Gaia-ESO Survey. We identify 18 members in Reticulum 2 and five in Horologium 1. We find Reticulum 2 to have a velocity dispersion of 3.22(-0.49)(+1.64) km s(-1) , implying a mass-to-light ratio (M/L) of similar to 500. The mean metallicity of Reticulum 2 is [Fe/H] = -2.46, with an intrinsic dispersion of similar to 0.3 dex and alpha-enhancement of similar to 0.4 dex. We conclude that Reticulum 2 is a dwarf galaxy. We also report on the serendipitous discovery of four stars in a previously unknown stellar substructure near Reticulum 2 with [Fe/H] similar to -2 and V-hel similar to 220 km s(-1), far from the systemic velocity of Reticulum 2. For Horologium 1 we infer a velocity dispersion of sigma (V) = 4.9(-0.9)(+2.8) km s(-1) and a M/L ratio of similar to 600, leading us to conclude that Horologium 1 is also a dwarf galaxy. Horologium 1 is slightly more metal-poor than Reticulum 2 ([Fe/H] = -2.76) and is similarly alpha-enhanced: [alpha/Fe] similar to 0.3 dex with a significant spread of metallicities of 0.17 dex. The line-of-sight velocity of Reticulum 2 is offset by 100 km s(-1) from the prediction of the orbital velocity of the Large Magellanic Cloud (LMC), thus making its association with the Cloud uncertain. However, at the location of Horologium 1, both the backward-integrated orbit of the LMC and its halo are predicted to have radial velocities similar to that of the dwarf. Therefore, it is possible that Horologium 1 is or once was a member of the Magellanic family.
  •  
3.
  • Kunder, Andrea, et al. (författare)
  • THE RADIAL VELOCITY EXPERIMENT (RAVE) : FIFTH DATA RELEASE
  • 2017
  • Ingår i: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the Southern Hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalog of red giant stars in the dereddened color - (J Ks) 0 interval (0.50, 0.85) for which the gravities were calibrated based only on seismology. Further data products for subsamples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the VizieR database.
  •  
4.
  • McMillan, Paul J., et al. (författare)
  • Improved distances and ages for stars common to TGAS and RAVE
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 477:4, s. 5279-5300
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine parallaxes from the first Gaia data release with the spectrophotometric distance estimation framework for stars in the fifth RAVE survey data release. The combined distance estimates aremore accurate than either determination in isolation - uncertainties are on average two times smaller than for RAVE-only distances (three times smaller for dwarfs), and 1.4 times smaller than TGAS parallax uncertainties (two times smaller for giants). We are also able to compare the estimates from spectrophotometry to those from Gaia, and use this to assess the reliability of both catalogues and improve our distance estimates. We find that the distances to the lowest log g stars are, on average, overestimated and caution that they may not be reliable. We also find that it is likely that the Gaia random uncertainties are smaller than the reported values. As a by-product we derive ages for the RAVE stars, many with relative uncertainties less than 20 per cent. These results for 219 566 RAVE sources have been made publicly available, and we encourage their use for studies that combine the radial velocities provided by RAVE with the proper motions provided by Gaia. A sample that we believe to be reliable can be found by taking only the stars with the flag notification 'flag_any=0'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy