SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glaser Christian) "

Sökning: WFRF:(Glaser Christian)

  • Resultat 1-10 av 139
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • IceCube-Gen2 : the window to the extreme Universe
  • 2021
  • Ingår i: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of electromagnetic radiation from radio to gamma-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (10(15) eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.
  •  
2.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
3.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
4.
  • Abbasi, R., et al. (författare)
  • A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory
  • 2021
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221 .- 1748-0221. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude.
  •  
5.
  • Abbasi, R., et al. (författare)
  • A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 946:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory's previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows.
  •  
6.
  • Abbasi, R., et al. (författare)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
7.
  • Abbasi, R., et al. (författare)
  • A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 911:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model.
  •  
8.
  • Abbasi, R., et al. (författare)
  • All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data
  • 2021
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 104:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained.
  •  
9.
  • Abbasi, R., et al. (författare)
  • Constraints on Populations of Neutrino Sources from Searches in the Directions of IceCube Neutrino Alerts
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 951:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E & GSIM; 100 TeV) neutrino candidate events with moderate to high (& GSIM;30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011-2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, an E (-2.5) neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 x 10(-9) Mpc(-3). This number changes to 3 x 10(-7) Mpc(-3) if number densities instead have no cosmic evolution.
  •  
10.
  • Abbasi, R., et al. (författare)
  • Density of GeV muons in air showers measured with IceTop
  • 2022
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 106:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the postLHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 139
Typ av publikation
tidskriftsartikel (79)
konferensbidrag (58)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (138)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Glaser, Christian (119)
Hallgren, Allan, 195 ... (101)
Botner, Olga (99)
Pérez de los Heros, ... (93)
Abbasi, R. (92)
Valtonen-Mattila, No ... (91)
visa fler...
O'Sullivan, Erin (90)
Sharma, Ankur (84)
Burgman, Alexander (66)
Zhang, Z. (63)
Deoskar, Kunal (39)
Walck, Christian (34)
Hultqvist, Klas (27)
Finley, Chad (27)
Jansson, Matti (26)
Ahrens, Maryon (25)
Barwick, S. W. (15)
Klein, S. R. (15)
Aguilar, J. A. (14)
Beatty, J. J. (14)
de Vries, K. D. (14)
Karle, A. (14)
Ryckbosch, D. (14)
Seckel, D. (14)
Pandya, H. (14)
Toscano, S. (14)
DuVernois, M. A. (14)
Jansson, Matti, 1982 ... (14)
Hultqvist, Klas, 195 ... (14)
Van Eijndhoven, N. (13)
Kelley, J. L. (13)
Tosi, D. (13)
Besson, D. Z. (12)
Williams, D. R. (11)
Bai, X. (10)
Engel, R. (10)
Bay, R. (10)
BenZvi, S. (10)
Berley, D. (10)
Bernardini, E. (10)
Blaufuss, E. (10)
De Clercq, C. (10)
de Wasseige, G. (10)
DeYoung, T. (10)
Diaz-Velez, J. C. (10)
Ehrhardt, T. (10)
Fazely, A. R. (10)
Hoffman, K. D. (10)
Ishihara, A. (10)
Yoshida, S. (10)
visa färre...
Lärosäte
Uppsala universitet (125)
Stockholms universitet (50)
Lunds universitet (9)
Chalmers tekniska högskola (9)
Umeå universitet (4)
Karolinska Institutet (4)
visa fler...
Göteborgs universitet (2)
Högskolan Dalarna (2)
Kungliga Tekniska Högskolan (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (138)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (125)
Medicin och hälsovetenskap (8)
Teknik (3)
Samhällsvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy