SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glud R.) "

Sökning: WFRF:(Glud R.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilbert, F., et al. (författare)
  • Sediment reworking by the burrowing polychaete Hediste diversicolor modulated by environmental and biological factors across the temperate North Atlantic. A tribute to Gaston Desrosiers
  • 2021
  • Ingår i: Journal of Experimental Marine Biology and Ecology. - : Elsevier BV. - 0022-0981. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle mixing and irrigation of the seabed by benthic fauna (bioturbation) have major impacts on ecosystem functions such as remineralization of organic matter and sediment-water exchange. As a tribute to Prof. Gaston Desrosiers by the Nereis Park association, eighteen laboratories carried out a collaborative experiment to acquire a global snapshot of particle reworking by the polychaete Hediste diversicolor at 16 sites surrounding the Northern Atlantic. Organisms and soft sediments were collected during May - July at different geographical locations and, using a common laboratory protocol, particulate fluorescent tracers (`luminophores') were used to quantify particle transport over a 10-day period. Particle mixing was quantified using the maximum penetration depth of tracers (MPD), particle diffusive coefficients (D-b), and non-local transport coefficients (r). Non-local coefficients (reflecting centimeter scale transport steps) ranged from 0.4 to 15 yr(-1), and were not correlated across sites with any measured biological (biomass, biovolume) or environmental parameters (temperature, grain size, organic matter). Maximum penetration depths (MPD) averaged similar to 10.7 cm (6.5-14.5 cm), and were similar to the global average bioturbation depth inferred from short-lived radiochemical tracers. MPD was also not correlated with measures of size (individual biomass), but increased with grain size and decreased with temperature. Bio-diffusion (D-b) correlated inversely with individual biomass (size) and directly with temperature over the environmental range (Q(10) similar to 1.7; 5-21 degrees C). The transport data were comparable in magnitude to rates reported for localized H. diversicolor populations of similar size, and confirmed some but not all correlations between sediment reworking and biological and environmental variables found in previous studies. The results imply that measures of particle reworking activities of a species from a single location can be generally extrapolated to different populations at similar conditions.
  •  
2.
  •  
3.
  • Cheung, Henry Lok Shan, et al. (författare)
  • Denitrification, anammox, and DNRA in oligotrophic continental shelf sediments
  • 2024
  • Ingår i: Limnology and Oceanography. - 1939-5590 .- 0024-3590.
  • Tidskriftsartikel (refereegranskat)abstract
    • Continental shelf sediments are considered hotspots for nitrogen (N) removal. While most investigations have quantified denitrification in shelves receiving large amounts of anthropogenic nutrient supply, we lack insight into the key drivers of N removal on oligotrophic shelves. Here, we measured rates of N removal through denitrification and anammox by the revised-isotope pairing technique (r-IPT) along the Northeastern New Zealand shelf. Denitrification dominated total N2 production at depths between 30 and 128 m with average rates (± SE) ranging from 65 ± 28 to 284 ± 72 μmol N m−2 d−1. N2 production by anammox ranged from 3 ± 1 to 28 ± 11 μmol N m−2 d−1 and accounted for 2–19% of total N2 production. DNRA was negligible in these oligotrophic settings. Parallel microbial community analysis showed that both Proteobacteria and Planctomycetota were key taxa driving denitrification. Denitrification displayed a negative correlation with oxygen penetration depth, and a positive correlation with macrofauna abundance. Our denitrification rates were comparable to oligotrophic shelves from the Arctic, but were lower than those from nutrient-rich Pacific and Atlantic shelves. Based on our results and existing IPT measurements, the global shelf denitrification rate was reassessed to be 53.5 ± 8.1 Tg N yr−1, equivalent to 20 ± 2% of marine N removal. We suggest that previous estimates of global shelf N loss might have been overestimated due to sampling bias toward areas with high N loads in the Northern Hemisphere.
  •  
4.
  •  
5.
  • Attard, K. M., et al. (författare)
  • Seasonal metabolism and carbon export potential of a key coastal habitat : The perennial canopy-forming macroalga Fucus vesiculosus
  • 2019
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 64:1, s. 149-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated similar to 40 m(2) of the seabed surface area and documented considerable oxygen production by the canopy year-round. High net oxygen production rates of up to 35 +/- 9 mmol m(-2) h(-1) were measured under peak irradiance of similar to 1200 mu mol photosynthetically active radiation (PAR) m(-2) s(-1) in summer. However, high rates > 15 mmol m(-2) h(-1) were also measured in late winter (March) under low light intensities < 250 mu mol PAR m(-2) s(-1) and water temperatures of similar to 1 degrees C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two-thirds of the year, and annual canopy NEM amounted to 25 mol O-2 m(-2) yr(-1), approximately six-fold higher than net phytoplankton production. Canopy C export was similar to 0.3 kg C m(-2) yr(-1), comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.
  •  
6.
  • Carroll, Christopher, et al. (författare)
  • Hypoxia Generated by Avian Embryo Growth Induces the HIF-α Response and Critical Vascularization
  • 2021
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer research has transformed our view on cellular mechanisms for oxygen sensing. It has been documented that these mechanisms are important for maintaining animal tissues and life in environments where oxygen (O2) concentrations fluctuate. In adult animals, oxygen sensing is governed by the Hypoxia Inducible Factors (HIFs) that are stabilized at low oxygen concentrations (hypoxia). However, the importance of hypoxia itself during development and for the onset of HIF-driven oxygen sensing remains poorly explored. Cellular responses to hypoxia associates with cell immaturity (stemness) and proper tissue and organ development. During mammalian development, the initial uterine environment is hypoxic. The oxygenation status during avian embryogenesis is more complex since O2 continuously equilibrates across the porous eggshell. Here, we investigate HIF dynamics and use microelectrodes to determine O2 concentrations within the egg and the embryo during the first four days of development. To determine the increased O2 consumption rates, we also obtain the O2 transport coefficient (DO2) of eggshell and associated inner and outer shell membranes, both directly (using microelectrodes in ovo for the first time) and indirectly (using water evaporation at 37.5°C for the first time). Our results demonstrate a distinct hypoxic phase (<5% O2) between day 1 and 2, concurring with the onset of HIF-α expression. This phase of hypoxia is demonstrably necessary for proper vascularization and survival. Our indirectly determined DO2 values are about 30% higher than those determined directly. A comparison with previously reported values indicates that this discrepancy may be real, reflecting that water vapor and O2 may be transported through the eggshell at different rates. Based on our obtained DO2 values, we demonstrate that increased O2 consumption of the growing embryo appears to generate the phase of hypoxia, which is also facilitated by the initially small gas cell and low membrane permeability. We infer that the phase of in ovo hypoxia facilitates correct avian development. These results support the view that hypoxic conditions, in which the animal clade evolved, remain functionally important during animal development. The study highlights that insights from the cancer field pertaining to the cellular capacities by which both somatic and cancer cells register and respond to fluctuations in O2 concentrations can broadly inform our exploration of animal development and success.
  •  
7.
  •  
8.
  • Glud, R. N., et al. (författare)
  • Distribution of oxygen in surface sediments from central Sagami Bay, Japan: In situ measurements by microelectrodes and planar optodes
  • 2005
  • Ingår i: Deep Sea Research Part I: Oceanographic Research Papers. - 0967-0637. ; 51:10, s. 1974-1987
  • Tidskriftsartikel (refereegranskat)abstract
    • Distributions of oxygen in surface sediments from central Sagami Bay were quantified using an autonomous vehicle carrying both a profiling microelectrode instrument and a planar optode module. Measurements were performed at 16 sites (either by microelectrodes or optodes) along a 175 m long transect and in total 45 electrode microprofiles and 6 O2 images (each covering 6.9×5.1 cm of surface sediment) were obtained. The data revealed an extensive small-scale variation of the in situ O2 distribution. The diffusive O2 uptake (DOU) as derived from the microelectrode data varied by a factor >10 with an average value of 2.6±1.6 mmol m−2 d−1 (n=45) corresponding to 8% of the estimated average primary production for the area. There was no significant difference in the average O2 penetration depth as quantified from the microprofiles and the planar optode images (P<0.05). The O2 penetration depth of the combined dataset varied between 0.5 and 9.2 mm with an average value of 3.9±1.5 mm (n=347). Even though the organic carbon rich sediments of central Sagami Bay may exhibit higher horizontal heterogeneity than normally encountered in deep-sea sediments, the data document that extrapolation from a few in situ data points should be done with caution. A detailed statistical analysis of the spatial autocorrelation in the O2 penetration depth documented that measurements performed less than 2 cm apart were autocorrelated. This implies that the aerobic benthic activity at the investigated site varied in patches with a characteristic size of a few cm. The presented data represent a detailed in situ study on small-scale spatial variability in sediment O2 distribution and document that planar O2 optode images provide a tool to access spatial heterogeneity of natural sediments.
  •  
9.
  • Parmentier, Frans Jan W, et al. (författare)
  • A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere
  • 2017
  • Ingår i: Ambio: a Journal of the Human Environment. - : Springer Science and Business Media LLC. - 0044-7447. ; 46, s. 53-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
  •  
10.
  • Rodil, Iván F., et al. (författare)
  • Estimating Respiration Rates and Secondary Production of Macrobenthic Communities Across Coastal Habitats with Contrasting Structural Biodiversity
  • 2020
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 23:3, s. 630-647
  • Tidskriftsartikel (refereegranskat)abstract
    • A central goal of benthic ecology is to describe the pathways and quantities of energy and material flow in seafloor communities over different spatial and temporal scales. We examined the relative macrobenthic contribution to the seafloor metabolism by estimating respiration and secondary production based on seasonal measurements of macrofauna biomass across key coastal habitats of the Baltic Sea archipelago. Then, we compared the macrofauna estimates with estimates of overall seafloor gross primary production and respiration obtained from the same habitats using the aquatic eddy covariance technique. Estimates of macrobenthic respiration rates suggest habitat-specific macrofauna contribution (%) to the overall seafloor respiration ranked as follows: blue mussel reef (44.5) > seagrass meadow (25.6) > mixed meadow (24.1) > bare sand (17.8) > Fucus-bed (11.1). In terms of secondary production (g C m(-2) y(-1)), our estimates suggest ranking of habitat value as follows: blue mussel reef (493.4) > seagrass meadow (278.5) > Fucus-bed (102.2) > mixed meadow (94.2) > bare sand (52.1). Our results suggest that approximately 12 and 10% of the overall soft-sediment metabolism translated into macrofauna respiration and secondary production, respectively. The hard-bottoms exemplified two end-points of the coastal metabolism, with the Fucus-bed as a high producer and active exporter of organic C (that is, net autotrophy), and the mussel reef as a high consumer and active recycler of organic C (that is, net heterotrophy). Using a combination of metrics of ecosystem functioning, such as respiration rates and secondary production, in combination with direct habitat-scale measurements of O-2 fluxes, our study provides a quantitative assessment of the role of macrofauna for ecosystem functioning across heterogeneous coastal seascapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy