SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Golutvin I) "

Sökning: WFRF:(Golutvin I)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Abt, I, et al. (författare)
  • Inclusive V-0 production cross sections from 920 GeV fixed target proton-nucleus collisions
  • 2003
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 29:2, s. 181-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Inclusive differential cross sections dsigma(pA)/dx(F) and dsigma(pA)/dp(t)(2) for the production of K-S(0), Lambda, and (&ULambda;) over bar particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to roots = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections dsigma(pA)(K-S(0))/dsigma(pA)(Lambda) and dsigma(pA)((&ULambda;) over bar)/dsigma(pA) (Lambda) are measured to be 6.2 +/- 0.5 and 0.66 +/- 0.07, respectively, for x(F) approximate to -0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions da,Ald t also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections sigma(pA) on the atomic mass A of the target material is discussed, and the deduced cross sections per nucleon sigma(pN) are compared with results obtained at other energies.
  •  
3.
  • Abt, I, et al. (författare)
  • Measurement of the b(b)over-bar production cross section in 920 GeV fixed-target proton-nucleus collisions
  • 2003
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 26:3, s. 345-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the HERA-B detector, the b (b) over bar production cross section has been measured in 920 GeV proton collisions on carbon and titanium targets. The b (b) over bar production was tagged via inclusive bottom quark decays into J/psi by exploiting the longitudinal separation of J/psi --> l(+)l(-) decay vertices from the primary proton-nucleus interaction. Both e(+)e(-) and mu(+)mu(-) channels have been reconstructed and the combined analysis yields the cross section sigma(b (b) over bar) = 32(-12)(+14)(stat) (+6)(-7)(sys) nb/nucleon.
  •  
4.
  • Ahdida, C., et al. (författare)
  • Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
  • 2019
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of O(10(6)). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  •  
5.
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles
  • 2021
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 81:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon m(gamma)D and its mixing parameter with the photon, epsilon. The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different productionmechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for m. D ranging between 0.8 and 3.3(-0.5)(+0.2) GeV, and epsilon(2) ranging between 10(-11) and 10(-17).
  •  
6.
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to Heavy Neutral Leptons
  • 2019
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
  •  
7.
  • Ahdida, C., et al. (författare)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221 .- 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  •  
8.
  • Ahdida, C., et al. (författare)
  • The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 15:01
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
  •  
9.
  • Ahdida, C., et al. (författare)
  • The SHiP experiment at the proposed CERN SPS Beam Dump Facility
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm { \,m}$$\end{document} long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\mathrm {GeV}$$\end{document} protons, the experiment aims at profiting from the 4x1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 10<^>{19}$$\end{document} protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {\,MeV\!/}c<^>2}$$\end{document} up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
  •  
10.
  • Ahdida, C., et al. (författare)
  • Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
  • 2022
  • Ingår i: Journal of Instrumentation. - : IOP Publishing. - 1748-0221 .- 1748-0221. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy