SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gribble F. M.) "

Sökning: WFRF:(Gribble F. M.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zhang, Q., et al. (författare)
  • Na+ current properties in islet alpha- and beta-cells reflect cell-specific Scn3a and Scn9a expression
  • 2014
  • Ingår i: Journal of Physiology-London. - : Wiley. - 0022-3751 .- 1469-7793. ; 592:21, s. 4677-4696
  • Tidskriftsartikel (refereegranskat)abstract
    • - and -cells express both Na(v)1.3 and Na(v)1.7 Na+ channels but in different relative amounts. The differential expression explains the different properties of Na+ currents in - and -cells. Na(v)1.3 is the functionally important Na+ channel subunit in both - and -cells. Islet Na(v)1.7 channels are locked in an inactive state due to an islet cell-specific factor. Mouse pancreatic - and -cells are equipped with voltage-gated Na+ currents that inactivate over widely different membrane potentials (half-maximal inactivation (V-0.5) at -100mV and -50mV in - and -cells, respectively). Single-cell PCR analyses show that both - and -cells have Na(v)1.3 (Scn3) and Na(v)1.7 (Scn9a) subunits, but their relative proportions differ: -cells principally express Na(v)1.7 and -cells Na(v)1.3. In -cells, genetically ablating Scn3a reduces the Na+ current by 80%. In -cells, knockout of Scn9a lowers the Na+ current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(-/-) islets but unaffected in Scn9a-deficient islets. Thus, Na(v)1.3 is the functionally important Na+ channel subunit in both - and -cells because Na(v)1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Na(v)1.7 sequence in brain and islets is identical and yet the V-0.5 for inactivation is >30mV more negative in -cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation.
  •  
3.
  • Trabelsi, M. S., et al. (författare)
  • Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates beta-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.
  •  
4.
  • Lund, M. L., et al. (författare)
  • L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:4, s. 614-623
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon-like peptide 1 (GLP-1) mimetics are effective drugs for treatment of type 2 diabetes, and there is consequently extensive interest in increasing endogenous GLP-1 secretion and L-cell abundance. Here we identify G-protein-coupled bile acid receptor 1 (GPBAR1) as a selective regulator of intestinal L-cell differentiation. Lithocholic acid and the synthetic GPBAR1 agonist, L3740, selectively increased L-cell density in mouse and human intestinal organoids and elevated GLP-1 secretory capacity. L3740 induced expression of Gcg and transcription factors Ngn3 and NeuroD1. L3740 also increased the L-cell number and GLP-1 levels and improved glucose tolerance in vivo. Further mechanistic examination revealed that the effect of L3740 on L cells required intact GLP-1 receptor and serotonin 5-hydroxytryptamine receptor 4 (5-HT4) signaling. Importantly, serotonin signaling through 5-HT4 mimicked the effects of L3740, acting downstream of GLP-1. Thus, GPBAR1 agonists and other powerful GLP-1 secretagogues facilitate L-cell differentiation through a paracrine GLP-1-dependent and serotonin-mediated mechanism.
  •  
5.
  • Anderberg, Rozita H, et al. (författare)
  • Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:4, s. 1062-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT2A) and 5-HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT2A, but surprisingly not the 5-HT2C, receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation.
  •  
6.
  • Anesten, Fredrik, et al. (författare)
  • Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6
  • 2016
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 311:1, s. R115-R123
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagonderived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca2+ concentration in neurons capable of expressing PPG. We also show that the Ca2+ increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca2+ to the cytosol from the extracellular space. © 2016 the American Physiological Society.
  •  
7.
  • Arora, Tulika, et al. (författare)
  • Microbial regulation of the L cell transcriptome
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • L cells are an important class of enteroendocrine cells secreting hormones such as glucagon like peptide-1 and peptide YY that have several metabolic and physiological effects. The gut is home to trillions of bacteria affecting host physiology, but there has been limited understanding about how the microbiota affects gene expression in L cells. Thus, we rederived the reporter mouse strain, GLU-Venus expressing yellow fluorescent protein under the control of the proglucagon gene, as germ-free (GF). Lpos cells from ileum and colon of GF and conventionally raised (CONV-R) GLU-Venus mice were isolated and subjected to transcriptomic profiling. We observed that the microbiota exerted major effects on ileal L cells. Gene Ontology enrichment analysis revealed that microbiota suppressed biological processes related to vesicle localization and synaptic vesicle cycling in Lpos cells from ileum. This finding was corroborated by electron microscopy of Lpos cells showing reduced numbers of vesicles as well as by demonstrating decreased intracellular GLP-1 content in primary cultures from ileum of CONV-R compared with GF GLU-Venus mice. By analysing Lpos cells following colonization of GF mice we observed that the greatest transcriptional regulation was evident within 1 day of colonization. Thus, the microbiota has a rapid and pronounced effect on the L cell transcriptome, predominantly in the ileum. © 2018 The Author(s).
  •  
8.
  • Richard, Jennifer E., et al. (författare)
  • Activation of the GLP-1 Receptors in the Nucleus of the Solitary Tract Reduces Food Reward Behavior and Targets the Mesolimbic System
  • 2015
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-beta-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS.
  •  
9.
  • Richard, Jennifer E., et al. (författare)
  • GLP-1 Receptor Stimulation of the Lateral Parabrachial Nucleus Reduces Food Intake: Neuroanatomical, Electrophysiological, and Behavioral Evidence
  • 2014
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 155:11, s. 4356-4367
  • Tidskriftsartikel (refereegranskat)abstract
    • The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN.
  •  
10.
  • Loos, Ruth J F, et al. (författare)
  • TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:7, s. 1943-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapidly accumulating evidence shows that common T-cell transcription factor (TCF)7L2 polymorphisms confer risk of type 2 diabetes through unknown mechanisms. We examined the association between four TCF7L2 single nucleotide polymorphisms (SNPs), including rs7903146, and measures of insulin sensitivity and insulin secretion in 1,697 Europid men and women of the population-based MRC (Medical Research Council)-Ely study. The T-(minor) allele of rs7903146 was strongly and positively associated with fasting proinsulin (P = 4.55 × 10−9) and 32,33 split proinsulin (P = 1.72 × 10−4) relative to total insulin levels; i.e., differences between T/T and C/C homozygotes amounted to 21.9 and 18.4% respectively. Notably, the insulin-to-glucose ratio (IGR) at 30-min oral glucose tolerance test (OGTT), a frequently used surrogate of first-phase insulin secretion, was not associated with the TCF7L2 SNP (P > 0.7). However, the insulin response (IGR) at 60-min OGTT was significantly lower in T-allele carriers (P = 3.5 × 10−3). The T-allele was also associated with higher A1C concentrations (P = 1.2 × 10−2) and reduced β-cell function, assessed by homeostasis model assessment of β-cell function (P = 2.8 × 10−2). Similar results were obtained for the other TCF7L2 SNPs. Of note, both major genes involved in proinsulin processing (PC1, PC2) contain TCF-binding sites in their promoters. Our findings suggest that the TCF7L2 risk allele may predispose to type 2 diabetes by impairing β-cell proinsulin processing. The risk allele increases proinsulin levels and diminishes the 60-min but not 30-min insulin response during OGTT. The strong association between the TCF7L2 risk allele and fasting proinsulin but not insulin levels is notable, as, in this unselected and largely normoglycemic population, external influences on β-cell stress are unlikely to be major factors influencing the efficiency of proinsulin processing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy