SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guglielmin Mauro) "

Sökning: WFRF:(Guglielmin Mauro)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biskaborn, Boris K., et al. (författare)
  • Permafrost is warming at a global scale
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.
  •  
2.
  • Guglielmin, Mauro, et al. (författare)
  • Ground surface temperature reconstruction for the last 500 years obtained from permafrost temperatures observed in the Share Stelvio borehole, Italian Alps
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14, s. 709-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. Here we present the results of the inversion of a multi-annual temperature profile (2013, 2014, 2015) of the deepest borehole (235 m) in the mountain permafrost of the world located close to Stelvio Pass in the Central Italian Alps. The SHARE STELVIO Borehole (SSB) has been monitored since 2010 with 13 thermistors placed at different depths between 20 and 235 m. The negligible porosity of the rock (dolostone,  <  5 %) allows us to assume the latent heat effects are also negligible. The inversion model proposed here is based on the Tikhonov regularization applied to a discretized heat equation, accompanied by a novel regularizing penalty operator. The general pattern of ground surface temperatures (GSTs) reconstructed from SSB for the last 500 years is similar to the mean annual air temperature (MAAT) reconstructions for the European Alps. The main difference with respect to MAAT reconstructions relates to post Little Ice Age (LIA) events. Between 1940 and 1989, SSB data indicate a cooling of ca. 1 °C. Subsequently, a rapid and abrupt GST warming (more than 0.8 °C per decade) was recorded between 1990 and 2011. This warming is of the same magnitude as the increase in MAAT between 1990 and 2000 recorded in central Europe and roughly doubling the increase in MAAT in the Alps.
  •  
3.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
4.
  • Vieira, Goncalo, et al. (författare)
  • Thermal State of Permafrost and Active-layer Monitoring in the Antarctic : Advances During the International Polar Year 2007–2009
  • 2010
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 21:2, s. 182-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Results obtained during the International Polar Year (IPY) on the thermal state of permafrost and the active layer in the Antarctic are presented, forming part of ANTPAS (‘Antarctic Permafrost and Soils’), which was one of the key projects developed by the International Permafrost Association and the Scientific Committee for Antarctic Research for the IPY. The number of boreholes for permafrost and active-layer monitoring was increased from 21 to 73 during the IPY, while CALM-S sites to monitor the active layer were increased from 18 to 28. Permafrost temperatures during the IPY were slightly below 0°C in the South Shetlands near sea-level, showing that this area is near the climatic boundary of permafrost and has the highest sensitivity to climate change in the region. Permafrost temperatures were much lower in continental Antarctica: from the coast to the interior and with increasing elevation they ranged between −13.3°C and −18.6°C in Northern Victoria Land, from −17.4°C to −22.5°C in the McMurdo Dry Valleys, and down to −23.6°C at high elevation on Mount Fleming (Ross Island). Other monitored regions in continental Antarctica also showed cold permafrost: Queen Maud Land exhibited values down to −17.8°C on nunataks, while in Novolazarevskaya (Schirmacher Oasis) at 80 m a.s.l. the permafrost temperature was −8.3°C. The coastal stations of Molodeznaya at Enderby Land showed permafrost temperatures of −9.8°C, Larsemann Hills – Progress Station in the Vestfold Hills region – recorded −8.5°C, and Russkaya in Marie Byrd Land, −10.4°C. This snapshot obtained during the IPY shows that the range of ground temperatures in the Antarctic is greater than in the Arctic. Copyright © 2010 John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy