SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gutierrez Farewik Elena Docent) "

Sökning: WFRF:(Gutierrez Farewik Elena Docent)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pettersson, Robert, 1981- (författare)
  • Simulation of Human Movements through Optimization
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Optimization has been used to simulate human neural control and resulting movement patterns. The short term aim was to develop the methodology required for solving the movement optimization problem often arising when modelling human movements. A long term aim is the contribution to increased knowledge about various human movements, wherein postures is one specific case. Simulation tools can give valuable information to improve orthopeadic treatments and technique for training and performance in sports. In one study a static 3D model with 30 muscle groups was used to analyse postures. The activation levels of these muscles are minimized in order to represent the individual’s choice of posture. Subject specific data in terms of anthropometry, strength and orthopedic aids serve as input. The specific aim of this part was to study effects from orthopedic treatment and altered abilities of the subject. Initial validation shows qualitative agreement of posture strategies but further details about passive stiffness and anthropometry are needed, especially to predict pelvis orientation. Four studies dealt with movement optimization. The main methodological advance was to introduce contact constraints to the movement optimization. A freetime multiple phase formulation was derived to be able to analyse movements where different constraints and degrees of freedom are present in subsequent phases of the movements. The athletic long jump, a two foot high jump, a backward somersault and rowing were used as applications with their different need of formulation. Maximum performance as well as least effort cost functions have been explored. Even though it has been a secondary aim in this work the results show reasonable agreement to expected movements in reality. Case specific subject properties and inclusion of muscle dynamics are required to draw conclusions about improvements in the sport activity, respectively.
  •  
2.
  • Sjöberg, Maria (författare)
  • Biomechanical analyses of flywheel resistance exercise : From a space- and ground-based perspective
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Astronauts suffer degradation of postural muscles and weight-bearing bones during long-duration spaceflight. Resistance exercise is used as a primary countermeasure against these degradations. However, it has proven difficult to predict appropriate exercise loads, and the countermeasure regimens in current use are not fully preventing bone and muscle loss. It is likely that gravity-independent exercise devices, based on flywheel inertial resistance, will be implemented in future musculoskeletal countermeasure regimens.In this thesis, biomechanical analyses of external and internal exercise loads during flywheel leg resistance exercises, were performed through experimental data collection and musculoskeletal modelling. The thesis is based on four separate studies with the collective aim to provide knowledge that can be implemented when designing flywheel-based strength-training regimens to be used both in terrestrial settings and as countermeasures against musculoskeletal deconditioning in weightlessness.The first study analyzed computed joint kinematics and kinetics, and relative muscle forces in the lower limb during maximal effort flywheel leg press (FWLP) and flywheel squat (FWS) exercises. Results showed that total exercise load was slightly higher during FWS than FWLP, whereas relative muscle force did not differ between the two exercises, suggesting that they may have similar strength training effects.The second study investigated the effect of gravity on internal joint load distribution during leg resistance exercise. This was done in two steps: 1) by comparing joint kinetics during FWLP and FWS at a given submaximal exercise load (80% of the isometric maximum load in FWLP), and 2) by simulating both FWLP and FWS in zero gravity and studying changes in joint loads. The first step revealed greater hip extension moment and lumbar joint-contact forces in FWLP than in FWS, indicating a notable effect of the direction of motion relative to the gravity vector, on body load distribution. Step two showed similar, or lower, joint loads in FWLP when gravity was removed, whereas in FWS, removal of gravity resulted in increased hip extension moment and lumbar force. Collectively, the results suggest that FWLP is a better ground-based analogue than FWS for leg-resistance exercise in space.The third study examined the accuracy of a pressure insole system regarding measurements of centre of pressure and ground reaction force during resistance exercises. The results showed that insoles are capable of accurately measuring centre of pressure at loads higher than 250 N and that force measurements are accurate in exercises involving mainly vertical ground reaction forces, but appears to overestimate ground reaction force for exercises involving greater portions of shear force.The fourth study analyzed low-back loads during FWLP, FWS and barbell back squat. Lumbar compression forces were high and similar in the three exercises, suggesting that the flywheel exercises are capable of stimulating vertebral bone regeneration without inflicting risk of vertebral fractures. Muscle engagement in the investigated back extensors were lower in FWLP than in the other two exercises, although presumed high enough to counteract space-induced atrophy if implemented in countermeasure training regimens.
  •  
3.
  • Wang, Ruoli (författare)
  • Biomechanical consequences of gait impairment at the ankle and foot : Injury, malalignment, and co-contraction
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The human foot contributes significantly to the function of the whole lower extremity during standing and locomotion. Nevertheless, the foot and ankle often suffer injuries and are affected by many musculoskeletal and neurological pathologies. The overall aim of this thesis was to evaluate gait parameters and muscle function change due to foot and ankle injury, malalignment and co-contraction. Using 3D gait analysis, analytical analyses and computational simulations, biomechanical consequences of gait impairment at the ankle and foot were explored in ablebodied persons and in patient groups with disorders affecting walking. We have characterized gait patterns of subjects with ankle fractures with a modified multi-segment foot model. The inter-segmental foot kinematics were determined during gait in 18 subjects one year after surgically-treated ankle fractures. Gait data were compared to an age- and gender-matched control group and the correlations between functional ankle score and gait parameters were determined. It was observed that even with fairly good clinical results, restricted range of motion and malalignment at and around the injured area were found in the injured limb. Moment-angle relationship (dynamic joint stiffness) - the relationship between changes in joint moment and changes in joint angle - is useful for demonstrating interaction of kinematics and kinetics during gait. Ankle dynamic joint stiffness during the stance phase of gait was analyzed and decomposed into three components in thirty able-bodied children, eight children with juvenile idiopathic arthritis and eight children with idiopathic toe-walking. Compared to controls, the component associated with changes of ground reaction moment was the source of highest deviation in both pathological groups. Specifically, ankle dynamic joint stiffness differences can be further identified via two subcomponents of this component which are based on magnitudes and rates of change of the ground reaction force and of its moment arm. And differences between the two patient groups and controls were most evident and interpretable here. Computational simulations using 3D musculoskeltal models can be powerful in investigating movement mechanisms, which are not otherwise possible or ethical to measure experimentally. We have quantified the effect of subtalar malalignment on the potential dynamic function of the main ankle dorsiflexors and plantarflexors: the gastrocnemius, soleus and tibialis anterior. Induced acceleration analysis was used to compute muscle-induced joint angular and body center of mass accelerations. A three-dimensional subject-specific linkage model was configured by gait data and driven by 1 Newton of individual muscle force. The excessive subtalar inversion or eversion was modified by offsetting up to ±20˚ from the normal subtalar angle while other configurations remain unaltered. We confirmed that in normal gait, muscles generally acted as their anatomical definitions, and that muscles can create motion in many joints, even those not spanned by the muscles. Excessive subtalar eversion was found to enlarge the plantarflexors’ and tibialis anterior’s function. In order to ascertain the reliability of muscle function computed from simulations, we have also performed a parametric study on eight healthy adults to evaluate how sensitive the muscle-induced joints’ accelerations are to the parameters of rigid foot-ground contact model. We quantified accelerations induced by the gastrocnemius, soleus and tibialis anterior on the lower limb joints. Two types of models, a ‘fixed joint’ model with three fixed joints under the foot and a ‘moving joint’ model with one joint located along the moving center of pressure were evaluated. The influences of different foot-ground contact joint constraints and locations of center of pressure were also investigated. Our findings indicate that both joint locations and prescribed degrees-of-freedom of models affect the predicted potential muscle function, wherein the joint locations are most influential. The pronounced influences can be observed in the non-sagittal plane. Excessive muscle co-contraction is a cause of inefficient or abnormal movement in some neuromuscular pathologies. We have identified the necessary compensation strategies to overcome excessive antagonistic muscle cocontraction at the ankle joint and retain a normal walking pattern. Muscle-actuated simulation of normal walking and induced acceleration analysis were performed to quantify compensatory mechanisms of the primary ankle and knee muscles in the presence of normal, medium and high levels of co-contraction of two antagonistic pairs (gastrocnemiustibialis anterior and soleus-tibialis anterior). The study showed that if the co-contraction level increases, the nearby synergistic muscles can contribute most to compensation in the gastrocnemius-tibialis anterior pair. In contrast, with the soleus-tibialis anterior co-contraction, the sartorius and hamstrings can provide important compensatory roles in knee accelerations. This dissertation documented a broad range of gait mechanisms and muscle functions in the foot and ankle area employing both experiments and computational simulations. The strategies and mechanisms in which altered gait and muscles activation are used to compensate for impairment can be regarded as references for evaluation of future patients and for dynamic muscle functions during gait.
  •  
4.
  • Brorsson, Sofia (författare)
  • Biomechanical studies of finger extension function. Analysis with a new force measuring device and ultrasound examination in rheumatoid arthritis and healhty muscles
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aims: The overall aim of this thesis was to further our understanding of extensor muscles and their role for hand function. The aims of the studies were: To develop and evaluate a new device for finger extensor force measurements. To evaluate ultrasound as a tool for assessment of muscle architecture. To determine the correlation between extensor muscle force and hand function. To evaluate the degree of impaired finger extensor force in rheumatoid arthritis (RA) and the correlation to impaired hand function. To analyse the effect of hand exercise in RA patients and healthy subjects with ultrasound and finger extension force measurements. Method: A new finger extension force measuring device was developed and an ultrasound based method was used to be able to objectively measure the finger extension force and analyze the static and dynamic extensor muscle architectures. Measurements were made of healthy volunteers (n=127) and RA patients (n=77) during uninfluenced and experimental conditions. A hand exercise program was performed and evaluated with hand force measurements, hand function test, patient relevant questionnaires (DASH and SF-36) and ultrasound measurements. Results: The new finger extension force measurement device was developed and then validated with measurements of accuracy as well as test-retest reliability. The coefficient of variation was 1.8 % of the applied load, and the test-retest reliability showed a coefficient of variation no more than 7.1% for healthy subjects. Ultrasound examination on m. extensor digitorum communis (EDC) showed significant differences between healthy men and healthy women as well as between healthy women and RA patients. The extension and flexion force improved in both groups after six weeks of hand exercise (p<0.01). Hand function improved in both groups (p<0.01). The RA group showed improvement in the results of the DASH questionnaire (p<0.05). The cross-sectional area of the EDC increased significantly in both groups. Conclusions: A new finger extension force measuring device has been developed which provides objective and reliable data on the extension force capacity of normal and dysfunctional hands and is sufficiently sensitive to evaluate the effects of hand exercise. US provide useful information about muscle architecture. A significant improvement of hand strength and hand function in RA patients was seen after six weeks of hand training, the improvement was even more pronounced after 12 weeks. Hand exercise is thus an effective intervention for RA patients, providing better strength and function.
  •  
5.
  • Heintz, Sofia, 1972- (författare)
  • Muscular forces from static optimization
  • 2006
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • At every joint there is a redundant set of muscle activated during movement or loading of the system. Optimization techniques are needed to evaluate individual forces in every muscle. The objective in this thesis was to use static optimization techniques to calculate individual muscle forces in the human extremities. A cost function based on a performance criterion of the involved muscular forces was set to be minimized together with constraints on the muscle forces, restraining negative and excessive values. Load-sharing, load capacity and optimal forces of a system can be evaluated, based on a description of the muscle architectural properties, such as moment arm, physiological cross-sectional area, and peak isometric force. The upper and lower extremities were modelled in two separate studies. The upper extremity was modelled as a two link-segment with fixed configurations. Load-sharing properties in a simplified model were analyzed. In a more complex model of the elbow and shoulder joint system of muscular forces, the overall total loading capacity was evaluated. A lower limb model was then used and optimal forces during gait were evaluated. Gait analysis was performed with simultaneous electromyography (EMG). Gait kinematics and kinetics were used in the static optimization to evaluate of optimal individual muscle forces. EMG recordings measure muscle activation. The raw EMG data was processed and a linear envelope of the signal was used to view the activation profile. A method described as the EMG-to-force method which scales and transforms subject specific EMG data is used to compare the evaluated optimal forces. Reasonably good correlation between calculated muscle forces from static optimization and EMG profiles was shown. Also, the possibility to view load-sharing properties of a musculoskeletal system demonstrate a promising complement to traditional motion analysis techniques. However, validation of the accurate muscular forces are needed but not possible. Future work is focused on adding more accurate settings in the muscle architectural properties such as moment arms and physiological cross-sectional areas. Further perspectives with this mathematic modelling technique include analyzing pathological movement, such as cerebral palsy and rheumatoid arthritis where muscular weakness, pain and joint deformities are common. In these, better understanding of muscular action and function are needed for better treatment.
  •  
6.
  • Wang, Ruoli, 1982- (författare)
  • Biomechanical Consequences of Foot and Ankle Injury and Deformity: Kinematics and Muscle Function
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The overall aim of this thesis was to discuss kinematics and muscle function changes due to foot and ankle injury or deformity. The first study aims to characterize gait patterns of subjects with a common lower limb injury, ankle fractures. Using three-dimensional movement analysis with a modified multi-segment foot model, the inter-segment foot kinematics was determined during gait in 18 subjects one year after surgically treated ankle fractures. Gait data were compared to an age- and gender-matched control group and the correlations between functional ankle score and gait parameters were determined. It was observed that even with fairly good clinical results, restricted range of motion at and around the injured area, and less adducted forefoot were found in the injured limb. The second study aims to quantify the effect of subtalar inversion/eversion on the dynamic function of the main ankle dorsi/plantarflexors: gastrocnemius, soleus and tibialis anterior. Induced acceleration analysis was used to compute muscle-induced joint angular and body center of mass accelerations. A three-dimensional subject specific linkage model was configured by gait data and driven by 1 Newton of individual muscle force. The excessive subtalar inversion or eversion was modified by offsetting up to ±20˚ from the normal subtalar angle while other configurations remain unaltered. We confirmed that in the normal gait, muscles generally acted as their anatomical definitions and muscles can create motion in joints, even not spanned by the muscles. The plantarflexors play important roles in body support and forward progression. Excessive subtalar eversion had negative effect on ankle plantarflexion, which may induce a less plantarflexed ankle, less extended knee and more flexed hip after initial contact. This thesis focused on gait kinematics and muscle functions in the foot and ankle area employing both experimental gait and computational simulations. The findings can be regarded as references for evaluating of future patients and for dynamic muscle functions during gait.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy