SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansen Lise Lotte) "

Sökning: WFRF:(Hansen Lise Lotte)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anderson, Judy E., et al. (författare)
  • Methods and biomarkers for the diagnosis and prognosis of cancer and other diseases : Towards personalized medicine
  • 2006
  • Ingår i: Drug resistance updates. - : Elsevier. - 1368-7646 .- 1532-2084. ; 9:4-5, s. 198-210
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid development of new diagnostic procedures, the mapping of the human genome, progress in mapping genetic polymorphisms, and recent advances in nucleic acid- and protein chip technologies are driving the development of personalized therapies. This breakthrough in medicine is expected to be achieved largely due to the implementation of "lab-on-the-chip" technology capable of performing hundreds, even thousands of biochemical, cellular and genetic tests on a single sample of blood or other body fluid. Focusing on a few disease-specific examples, this review discusses selected technologies and their combinations likely to be incorporated in the "lab-on-the-chip" and to provide rapid and versatile information about specific diseases entities. Focusing on breast cancer and after an overview of single-nucleofide polymorphism (SNP)-screening methodologies, we discuss the diagnostic and prognostic importance of SNPs. Next, using Duchenne muscular dystrophy (DMD) as an example, we provide a brief overview of powerful and innovative integration of traditional immuno-histochemistry techniques with advanced biophysical methods such as NMR-spectroscopy or Fourier-transformed infrared (FT-IR) spectroscopy. A brief overview of the challenges and opportunities provided by protein and aptamer microarrays follows. We conclude by highlighting novel and promising biochemical markers for the development of personalized treatment of cancer and other diseases: serum cytochrome c, cytokeratin-18 and -19 and their proteolytic fragments for the detection and quantitation of malignant tumor mass, tumor cell turn-over, inflammatory processes during hepatitis and Epstein-Barr virus (EBV)-induced hemophagocytic lymphohistiocytosis and apoptotic/necrotic cancer cell death. (c) 2006 Elsevier Ltd. All rights reserved.
  •  
2.
  • Borgbo, Tanni, et al. (författare)
  • Genotyping common FSHR polymorphisms based on competitive amplification of differentially melting amplicons (CADMA).
  • 2014
  • Ingår i: Journal of Assisted Reproduction and Genetics. - : Springer Science and Business Media LLC. - 1058-0468 .- 1573-7330. ; 31:11, s. 1427-1436
  • Tidskriftsartikel (refereegranskat)abstract
    • To provide an improved platform for simple, reliable, and cost-effective genotyping. Modern fertility treatments are becoming increasingly individualized in an attempt to optimise the follicular response and reproductive outcome, following controlled ovarian stimulation. As the field of pharmacogenetics evolve, genetic biomarkers such as polymorphisms of the follicle stimulating hormone receptor (FSHR) may be included as a predictive tool for individualized fertility treatment. However, the currently available genotyping methods are expensive, time-consuming or have a limited analytical sensitivity. Here, we present a novel version of "competitive amplification of differentially melting amplicons" (CADMA), providing an improved platform for simple, reliable, and cost-effective genotyping. Two CADMA based assays were designed for the two common polymorphisms of the FSHR gene: rs6165 (c.919A > G, p. Thr307Ala, FSHR 307) and rs6166 (c.2039A > G, p. Asn680Ser, FSHR 680). To evaluate the reliability of the new CADMA-based assays, the genotyping results were compared with two conventional PCR based genotyping methods; allele-specific PCR (AS-PCR) and Sanger sequencing. The genotype frequencies for both polymorphisms were 35 % (TT), 42 % (CT), and 23 % (CC), respectively. A 100 % accordance was observed between the CADMA-based genotyping results and sequencing results, whereas 5 discrepancies were observed between the AS-PCR results and the CADMA-based genotyping results. Comparing the CADMA-based assays to (AS-PCR) and Sanger sequencing, the CADMA based assays showed an improved analytical sensitivity and a wider applicability. The new assays provide a reliable, fast and user-friendly genotyping method facilitating a wider implication in clinical practise.
  •  
3.
  • Karlsson, Martin, et al. (författare)
  • Measurement of the differential cross section for the two-body photodisintegration of He-3 at theta(LAB)=90 degrees using tagged photons in the energy range 14-31 MeV
  • 2009
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 80:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The two-body photodisintegration of He-3 has been investigated using tagged photons with energies from 14-31 MeV at MAX-lab in Lund, Sweden. The two-body breakup channel was unambiguously identified by the (nonsimultaneous) detection of both protons and deuterons. This approach was made feasible by the overdetermined kinematic situation afforded by the tagged-photon technique. Proton-and deuteron-energy spectra were measured using four silicon surface-barrier detector telescopes located at a laboratory angle of 90 degrees with respect to the incident photon-beam direction. Average statistical and systematic uncertainties of 5.7% and 6.6% in the differential cross section were obtained for 11 photon-energy bins with an average width of 1.2 MeV. The results are compared to previous experimental data measured at comparable photon energies as well as to the results of two recent Faddeev calculations which employ realistic potential models and take into account three-nucleon forces and final-state interactions. Both the accuracy and precision of the present data are improved over those obtained in the previous measurements. The data are in good agreement with most of the previous results, and favor the inclusion of three-nucleon forces in the calculations.
  •  
4.
  • Maddika, Subbareddy, et al. (författare)
  • Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis
  • 2008
  • Ingår i: Journal of Cell Science. - : The Company of Biologists Ltd.. - 0021-9533 .- 1477-9137. ; 121, s. 979-988
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2–cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.
  •  
5.
  • Pedersen, Kristina, et al. (författare)
  • A simple way to evaluate self-designed probes for tumor specific Multiplex Ligation-dependent Probe Amplification (MLPA)
  • 2010
  • Ingår i: BMC Research Notes. - : BioMed Central Ltd. - 1756-0500. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:The Multiplex Ligation-dependent Probe Amplification (MLPA) is widely used for analysis of copy number variations (CNVs) in single or multiple loci. MLPA is a versatile methodology and important tool in cancer research; it provides precise information on increased or decreased copy number at specific loci as opposed to loss of heterozygosity (LOH) studies based upon microsatellite analysis. Pre-designed MLPA kits and software are commercially available to analyze multiple exons, genes, and genomic regions. However, an increasing demand for new gene specific assays makes it necessary to self-design new MLPA probes for which the available software may not be applicable. During evaluation of new self-designed reference probes, we encountered a number of problems, especially when applying the MLPA methodology to tumor samples.FINDINGS:DNA samples from 48 unaffected individuals and 145 breast cancer patients were used to evaluate 11 self-designed MLPA probes and determine the cut-off values for CNV, before applying the MLPA probes to normalize the target probes in a cohort of affected individuals. To test the calculation strategy, three probes were designed to cover regions in Regulator of G-protein Signaling 8 (RGS8), which we previously have identified as being affected by allelic imbalance by LOH analysis across RGS8 in the cohort comprising 145 breast tumors. Agreement between the LOH results and the results obtained by each of the three MLPA probes in RGS8 was found for 64%, 73%, and 91%, of the analyzed samples, respectively.CONCLUSION:Here, we present a straightforward method, based upon the normalization pattern in both unaffected and affected individuals, to evaluate self-designed reference probes and to calculate CNV for the MLPA assay with specific focus on the difficulties when analyzing tumor DNA.
  •  
6.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
7.
  • Schmidt, Amand F., et al. (författare)
  • PCSK9 genetic variants and risk of type 2 diabetes : a mendelian randomisation study
  • 2017
  • Ingår i: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 5:2, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way off sets their substantial benefi ts. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely eff ects of PCSK9 inhibitors on diabetes risk. Methods In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA 1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. Findings Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0.09 mmol/L, 95% CI 0.02 to 0.15), bodyweight (1.03 kg, 0.24 to 1.82), waist-to-hip ratio (0.006, 0.003 to 0.010), and an odds ratio for type diabetes of 1.29 (1.11 to 1.50). Based on the collected data, we did not identify associations with HbA 1c (0.03%, -0.01 to 0.08), fasting insulin (0.00%, -0.06 to 0.07), and BMI (0.11 kg/m(2), -0.09 to 0.30). Interpretation PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefi ts of PCSK9 inhibitor treatment, as was previously done for statins.
  •  
8.
  • Wiechec, Emilia, et al. (författare)
  • A fragile site within the HPC1 region at 1q25.3 affecting RGS16, RGSL1, and RGSL2 in human breast carcinomas
  • 2008
  • Ingår i: Genes, Chromosomes and Cancer. - : John Wiley & Sons. - 1045-2257 .- 1098-2264. ; 47:9, s. 766-780
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic alterations affecting chromosome arm 1q are considered to be an early event in breast carcinogenesis and are correlated with good prognosis for the patients. In the search for new breast cancer susceptibility genes, we focused on three genes from the Regulator of G protein Signaling family clustered on 1q25.3 within the HPC1 region. RGS16, RGSL2, and RGSL1 encode proteins interacting with G proteins and accelerating termination of the G protein signaling. To evaluate the implication of these genes in somatic breast cancer, we analyzed a 154-kb segment at 1q25.3 using allelic imbalance (AI) mapping. A panel of 222 patients diagnosed with primary breast cancer was analyzed using newly identified, intragenic short tandem repeats (STRs). A high rate of AI (>50%) was found across the region and led to the identification of internal chromosomal breakpoints. A detailed mapping of the breakpoints revealed intragenic microdeletions affecting the coding regions of RGSL2, RGSL1, and the regulatory region of RGS16. The promoter region of RGS16 was found to be methylated in 10% of the tumors. A decrease in the RGS16 expression was found in tumors with chromosomal breakpoints, AI, and aberrant methylation. We found a significant association between AI of RGSL2 and localized disease, which correlated with good prognosis for patients with breast cancer. In conclusion, we found the 1q25.3 region to be highly unstable in breast tumors comprising a cluster of chromosomal breakpoints, intragenic microdeletions, frequent allelic imbalance correlating with long metastasis-free survival, and RGS16 promoter methylation affecting the protein expression.
  •  
9.
  • Wiechec, Emilia, et al. (författare)
  • Chromosome 1q25.3 copy number alterations in primary breast cancers detected by multiplex ligation-dependent probe amplification and allelic imbalance assays and its comparison with fluorescent in situ hybridization assays
  • 2013
  • Ingår i: Cellular Oncology. - : Springer Netherlands. - 2211-3428 .- 2211-3436. ; 36:2, s. 113-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Breast cancer is characterized by a complex pattern of chromosomal alterations, which is in accordance with its heterogeneous character. Simultaneous gains of 1q and losses of 16q represent early events in breast tumourigenesis and have been related to clinical outcome. Here, we evaluated the accuracy of 1q25.3 copy number detection in conjunction with allelic imbalance (AI) detection in a series of primary breast tumours.METHODS:We compared previously obtained AI results from the 1q25.3 region in a series of 222 primary breast tumours with newly obtained MLPA and FISH results. To this end, a novel 1q25.3 MLPA probe set was designed and a commercially available 1q25.3/1p35.2 dual color FISH probe set was used.RESULTS:MLPA revealed 1q25.3 copy number gains and copy number losses in subsets of the tumour samples tested. Next, tumour samples were examined by FISH and scored for the level of 1q25.3 alterations. Non-tumourigenic nuclei from healthy individuals were used to establish cut-off levels for 1q25.3 copy numbers. By doing so, we found a 100 % concordance between the FISH results in breast tumour samples displaying similar 1q25.3 copy number alterations as determined by MLPA and, previously, AI. Furthermore, FISH was found to be instrumental in determining 1q25.3 copy number alterations in samples exhibiting discordances between AI and MLPA.CONCLUSIONS:This study shows that both AI and MLPA assays can be employed to map regions exhibiting copy number alterations in cancer genomes, and that the results obtained are in concordance with FISH assays.
  •  
10.
  • Wiechec, Emilia, et al. (författare)
  • High-Resolution Melting Analysis for Mutation Screening of RGSL1, RGS16, and RGS8 in Breast Cancer
  • 2011
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 20:2, s. 397-407
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Identification of specific mutation targets in cancer may lead to discovery of the genes modulating cancer susceptibility and/or prognosis. The RGSL1, RGS16, and RGS8 genes within the 1q25.3 region belong to the novel family of regulators of G protein signaling (RGS) genes, which increase the GTPase activity of the G alpha subunit to attenuate signaling from the G protein-coupled receptor. We evaluated the use of high-resolution melting (HRM) to screen for mutations in the genes of interest and assess their clinical significance. Methods: The HRM analysis was used to screen 32 coding exons of RGSL1, RGS16, and RGS8 in tumors from 200 breast cancer patients. All sequence variants detected by HRM resulted in abnormal shape of the melting curves. The identified mutations and known single nucleotide polymorphisms (SNP) were subsequently confirmed by sequencing, and distribution of the SNP genotypes was determined by SNaPshot analysis. A case-control analysis of genotype frequencies was carried out. Results: We identified three tumor specific missense mutations in RGSL1 (ex6 c.664 G>A (Val222Ile), ex13 c.2262 C>G (Asp754Glu), and ex13 c.2316 C>T (Ser772Leu) in three different breast cancer patients. In addition, a total of seven known SNPs were identified in this study. Genotype distributions were not significantly different between breast cancer patients and controls. Conclusions and Impact: Identification of novel mutations within RGSL1 provides a new insight into the pathophysiology of breast cancer. Moreover, the HRM analysis represents a reliable and highly sensitive method for mutation scanning of multiple exons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy