SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henshaw Jonathan D.) "

Sökning: WFRF:(Henshaw Jonathan D.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnes, Ashley T., et al. (författare)
  • Mother of dragons: A massive, quiescent core in the dragon cloud (IRDC G028.37+00.07)
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Core accretion models of massive star formation require the existence of massive, starless cores within molecular clouds. Yet, only a small number of candidates for such truly massive, monolithic cores are currently known. Aims. Here we analyse a massive core in the well-studied infrared-dark cloud (IRDC) called the dragon clouda'(also known as G028.37+00.07 or Cloud Ca). This core (C2c1) sits at the end of a chain of a roughly equally spaced actively star-forming cores near the center of the IRDC. Methods. We present new high-angular-resolution 1 mm ALMA dust continuum and molecular line observations of the massive core. Results. The high-angular-resolution observations show that this region fragments into two cores, C2c1a and C2c1b, which retain significant background-subtracted masses of 23 M· and 2 M· (31 M· and 6 M· without background subtraction), respectively. The cores do not appear to fragment further on the scales of our highest-angular-resolution images (0.2 , 0.005 pc ∼ 1000 AU). We find that these cores are very dense (nH2 > 106 cm-3) and have only trans-sonic non-thermal motions ( 3s ∼ 1). Together the mass, density, and internal motions imply a virial parameter of
  •  
2.
  • Barnes, Ashley T., et al. (författare)
  • Young massive star cluster formation in the Galactic Centre is driven by global gravitational collapse of high-mass molecular clouds
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:1, s. 283-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Young massive clusters (YMCs) are the most compact, high-mass stellar systems still forming at the present day. The precursor clouds to such systems are, however, rare due to their large initial gas mass reservoirs and rapid dispersal time-scales due to stellar feedback. None the less, unlike their high-z counterparts, these precursors are resolvable down to the sites of individually forming stars, and hence represent the ideal environments in which to test the current theories of star and cluster formation. Using high angular resolution (1 arcsec / 0.05 pc) and sensitivity ALMA observations of two YMC progenitor clouds in the Galactic Centre, we have identified a suite of molecular line transitions - e.g. c-C3H2 (7 - 6) - that are believed to be optically thin, and reliably trace the gas structure in the highest density gas on star-forming core scales. We conduct a virial analysis of the identified core and proto-cluster regions, and show that half of the cores (5/10) and both proto-clusters are unstable to gravitational collapse. This is the first kinematic evidence of global gravitational collapse in YMC precursor clouds at such an early evolutionary stage. The implications are that if these clouds are to form YMCs, then they likely do so via the 'conveyor-belt' mode, whereby stars continually form within dispersed dense gas cores as the cloud undergoes global gravitational collapse. The concurrent contraction of both the cluster-scale gas and embedded (proto-)stars ultimately leads to the high (proto-)stellar density in YMCs.
  •  
3.
  • Petkova, Maya, 1990, et al. (författare)
  • Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 962-968
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size-linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 ('the Brick'), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size-linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud's gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.
  •  
4.
  • Petkova, Maya, 1990, et al. (författare)
  • The complex multiscale structure in simulated and observed emission maps of the proto-cluster cloud G0.253+0.016 ('the Brick')
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2245-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Molecular Zone (the central ∼500 pc of the Milky Way) hosts molecular clouds in an extreme environment of strong shear, high gas pressure and density, and complex chemistry. G0.253+0.016, also known as 'the Brick', is the densest, most compact, and quiescent of these clouds. High-resolution observations with the Atacama Large Millimetre/submillimetre Array (ALMA) have revealed its complex, hierarchical structure. In this paper we compare the properties of recent hydrodynamical simulations of the Brick to those of the ALMA observations. To facilitate the comparison, we post-process the simulations and create synthetic ALMA maps of molecular line emission from eight molecules. We correlate the line emission maps to each other and to the mass column density and find that HNCO is the best mass tracer of the eight emission lines within the simulations. Additionally, we characterize the spatial structure of the observed and simulated cloud using the density probability distribution function (PDF), spatial power spectrum, fractal dimension, and moments of inertia. While we find good agreement between the observed and simulated data in terms of power spectra and fractal dimensions, there are key differences in the density PDFs and moments of inertia, which we attribute to the omission of magnetic fields in the simulations. This demonstrates that the presence of the Galactic potential can reproduce many cloud properties, but additional physical processes are needed to fully explain the gas structure.
  •  
5.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • Deuterium fractionation across the infrared-dark cloud G034.77-00.55 interacting with the supernova remnant W44
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. Aims. To test this scenario, we measured the deuteration of N2H+, DNfrac 2H+- a well-studied tracer of pre-stellar cores - across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. Methods. We use N2H+ and N2D+ J = 1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DN2H+ frac towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, and ambient gas. Results. We find DN2H+ frac in the range 0.03-0.1, which is several orders of magnitude larger than the cosmic D/H ratio (∼10-5). The DN2H+ frac across the shock front is enhanced by more than a factor of 2 (DNfrac 2H+∼ 0.05-0.07) with respect to the ambient gas (=0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DN2H+ frac ∼ 0.1.
  •  
6.
  • Cosentino, Giuliana, et al. (författare)
  • Interstellar Plunging Waves: ALMA Resolves the Physical Structure of Nonstationary MHD Shocks
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 881:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetohydrodynamic (MHD) shocks are violent events that inject large amounts of energy in the interstellar medium dramatically modifying its physical properties and chemical composition. Indirect evidence for the presence of such shocks has been reported from the especial chemistry detected toward a variety of astrophysical shocked environments. However, the internal physical structure of these shocks remains unresolved since their expected spatial scales are too small to be measured with current instrumentation. Here we report the first detection of a fully spatially resolved, MHD shock toward the infrared dark cloud (IRDC) G034.77-00.55. The shock, probed by silicon monoxide (SiO) and observed with the Atacama Large Millimeter/submillimeter Array (ALMA), is associated with the collision between the dense molecular gas of the cloud and a molecular gas flow pushed toward the IRDC by the nearby supernova remnant (SNR) W44. The interaction is occurring on subparsec spatial scales thanks to the enhanced magnetic field of the SNR, making the dissipation region of the MHD shock large enough to be resolved with ALMA. Our observations suggest that molecular flow-flow collisions can be triggered by stellar feedback, inducing shocked molecular gas densities compatible with those required for massive star formation.
  •  
7.
  • Entekhabi, N., et al. (författare)
  • Astrochemical modelling of infrared dark clouds
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Infrared dark clouds (IRDCs) are cold, dense regions of the interstellar medium (ISM) that are likely to represent the initial conditions for massive star and star cluster formation. It is thus important to study the physical and chemical conditions of IRDCs to provide constraints and inputs for theoretical models of these processes. Aims. We aim to determine the astrochemical conditions, especially the cosmic ray ionisation rate (CRIR) and chemical age, in different regions of the massive IRDC G28.37+00.07 by comparing observed abundances of multiple molecules and molecular ions with the predictions of astrochemical models. Methods. We have computed a series of single-zone, time-dependent, astrochemical models with a gas-grain network that systematically explores the parameter space of the density, temperature, CRIR, and visual extinction. We have also investigated the effects of choices of CO ice binding energy and temperatures achieved in the transient heating of grains when struck by cosmic rays. We selected ten positions across the IRDC that are known to have a variety of star formation activity. We utilised mid-infrared extinction maps and sub-millimetre (sub-mm) emission maps to measure the mass surface densities of these regions needed for abundance and volume density estimates. The sub-mm emission maps were also used to measure temperatures. We then used Instituto de Radioas-tromía Milimétrica (IRAM) 30 m observations of various tracers, especially C18O(1-0), H13CO+(1-0), HC18O+(1-0), and N2H+(1-0), to estimate column densities and thus abundances. Finally, we investigated the range of astrochemical conditions that are consistent with the observed abundances. Results. The typical physical conditions of the IRDC regions are nH ∼ 3 ×-104 to 105 cm-3 and T ∼ 10 to 15 K. Strong emission of H13CO+(1-0) and N2H+(1-0) is detected towards all the positions and these species are used to define relatively narrow velocity ranges of the IRDC regions, which are used for estimates of CO abundances, via C18O(1-0). We would like to note that CO depletion factors are estimated to be in the range fD ∼ 3 to 10. Using estimates of the abundances of CO, HCO+, and N2H+, we find consistency with astrochemical models that have relatively low CRIRs of ζ ∼ 10-18 to ∼10-17 s-1, with no evidence for systematic variation with the level of star formation activity. Astrochemical ages, which are defined with a reference to an initial condition of all H in H2, all C in CO, and all other species in atomic form, are found to be <1 Myr. We also explore the effects of using other detected species, that is HCN, HNC, HNCO, CH3OH, and H2CO, to constrain the models. These generally lead to implied conditions with higher levels of CRIRs and older chemical ages. Considering the observed fD versus nH relation of the ten positions, which we find to have relatively little scatter, we discuss potential ways in which the astrochemical models can match such a relation as a quasi-equilibrium limit valid at ages of at least a few free-fall times, that is 3;0.3 Myr, including the effect of CO envelope contamination, small variations in temperature history near 15 K, CO-ice binding energy uncertainties, and CR-induced desorption. We find general consistency with the data of ∼0.5 Myr-old models that have ζ ∼ 2-5-10-18 s-1 and CO abundances set by a balance of freeze-out with CR-induced desorption. Conclusions. We have constrained the astrochemical conditions in ten regions in a massive IRDC, finding evidence for relatively low values of CRIR compared to diffuse ISM levels. We have not seen clear evidence for variation in the CRIR with the level of star formation activity. We favour models that involve relatively low CRIRs (≲ 10-17 s-1) and relatively old chemical ages (≳ 3;0.3 Myr, i.e. 3;3tff). We discuss potential sources of systematic uncertainties in these results and the overall implications for IRDC evolutionary history and astrochemical models.
  •  
8.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
9.
  • Liu, Daizhong, et al. (författare)
  • PHANGS–JWST First Results : Stellar-feedback-driven Excitation and Dissociation of Molecular Gas in the Starburst Ring of NGC 1365?
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C ı] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C ı to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas.
  •  
10.
  • Barnes, A. T., et al. (författare)
  • ALMA-IRDC: dense gas mass distribution from cloud to core scales
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 4601-4626
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared dark clouds (IRDCs) are potential hosts of the elusive early phases of high mass star formation (HMSF). Here, we conduct an in-depth analysis of the fragmentation properties of a sample of 10 IRDCs, which have been highlighted as some of the best candidates to study HMSF within the Milky Way. To do so, we have obtained a set of large mosaics covering these IRDCs with Atacama Large Millimeter/submillimeter Array (ALMA) at Band 3 (or 3 mm). These observations have a high angular resolution (similar to 3 arcsec; similar to 0.05 pc), and high continuum and spectral line sensitivity (similar to 0.15 mJy beam(-1) and similar to 0.2 K per 0.1 km s(-1) channel at the N2H+ (1 - 0) transition). From the dust continuum emission, we identify 96 cores ranging from low to high mass (M = 3.4-50.9M(circle dot)) that are gravitationally bound (alpha(vir) = 0.3-1.3) and which would require magnetic field strengths of B = 0.3-1.0 mG to be in virial equilibrium. We combine these results with a homogenized catalogue of literature cores to recover the hierarchical structure within these clouds over four orders of magnitude in spatial scale (0.01-10 pc). Using supplementary observations at an even higher angular resolution, we find that the smallest fragments (<0.02 pc) within this hierarchy do not currently have the mass and/or the density required to form high-mass stars. None the less, the new ALMA observations presented in this paper have facilitated the identification of 19 (6 quiescent and 13 star-forming) cores that retain >16M(circle dot) without further fragmentation. These high-mass cores contain trans-sonic non-thermal motions, are kinematically sub-virial, and require moderate magnetic field strengths for support against collapse. The identification of these potential sites of HMSF represents a key step in allowing us to test the predictions from high-mass star and cluster formation theories.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy