SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslin Rees Dominic) "

Sökning: WFRF:(Heslin Rees Dominic)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heslin-Rees, Dominic, et al. (författare)
  • From a polar to a marine environment : has the changing Arctic led to a shift in aerosol light scattering properties?
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:21, s. 13671-13686
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of long-term trends in aerosol optical properties is an important task to understand the underlying aerosol processes influencing the change of climate. The Arctic, as the place where climate change manifests most, is an especially sensitive region of the world. Within this work, we use a unique long-term data record of key aerosol optical properties from the Zeppelin Observatory, Svalbard, to ask the question of whether the environmental changes of the last 2 decades in the Arctic are reflected in the observations. We perform a trend analysis of the measured particle light scattering and backscattering coefficients and the derived scattering Angstrom exponent and hemispheric backscattering fraction. In contrast to previous studies, the effect of in-cloud scavenging and of potential sampling losses at the site are taken explicitly into account in the trend analysis. The analysis is combined with a back trajectory analysis and satellite-derived sea ice data to support the interpretation of the observed trends. We find that the optical properties of aerosol particles have undergone clear and significant changes in the past 2 decades. The scattering Angstrom exponent exhibits statistically significant decreasing of between -4.9 % yr(-1) and -6.5 % yr(-1) (using wavelengths of lambda = 450 and 550 nm), while the particle light scattering coefficient exhibits statistically significant increasing trends of between 2.6 % yr(-1) and 2.9 % yr(-1) (at a wavelength of lambda = 550 nm). The magnitudes of the trends vary depending on the season. These trends indicate a shift to an aerosol dominated more by coarse-mode particles, most likely the result of increases in the relative amount of sea spray aerosol. We show that changes in air mass circulation patterns, specifically an increase in air masses from the south-west, are responsible for the shift in aerosol optical properties, while the decrease of Arctic sea ice in the last 2 decades only had a marginal influence on the observed trends.
  •  
2.
  • Heslin-Rees, Dominic, 1993-, et al. (författare)
  • Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
  • 2024
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2059-2075
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated long-term changes using a harmonised 22-year data set of aerosol light absorption measurements, in conjunction with air mass history and aerosol source analysis. The measurements were performed at Zeppelin Observatory, Svalbard, from 2002 to 2023. We report a statistically significant decreasing long-term trend for the light absorption coefficient. However, the last 8 years of 2016–2023 showed a slight increase in the magnitude of the light absorption coefficient for the Arctic haze season. In addition, we observed an increasing trend in the single-scattering albedo from 2002 to 2023. Five distinct source regions, representing different transport pathways, were identified. The trends involving air masses from the five regions showed decreasing absorption coefficients, except for the air masses from Eurasia. We show that the changes in the occurrences of each transport pathway cannot explain the reductions in the absorption coefficient observed at the Zeppelin station. An increase in contributions of air masses from more marine regions, with lower absorption coefficients, is compensated for by an influence from high-emission regions. The proportion of air masses en route to Zeppelin, which have been influenced by active fires, has undergone a noticeable increase starting in 2015. However, this increase has not impacted the long-term trends in the concentration of light-absorbing aerosol. Along with aerosol optical properties, we also show an increasing trend in accumulated surface precipitation experienced by air masses en route to the Zeppelin Observatory. We argue that the increase in precipitation, as experienced by air masses arriving at the station, can explain a quarter of the long-term reduction in the light absorption coefficient. We emphasise that meteorological conditions en route to the Zeppelin Observatory are critical for understanding the observed trends.
  •  
3.
  • Khadir, Théodore, 1996-, et al. (författare)
  • Sink, Source or Something In-Between? Net Effects of Precipitation on Aerosol Particle Populations
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between atmospheric aerosols, clouds, and precipitation impact Earth's radiative balance and air quality, yet remain poorly constrained. Precipitating clouds serve as major sinks for particulate matter, but recent studies suggest that precipitation may also act as a particle source. The magnitude of the sources versus sinks, particularly for cloud condensation nuclei (CCN) numbers, remain unquantified. This study analyzes multi-year in situ observations from tropical and boreal forests, as well as Arctic marine environment, showing links between recent precipitation and enhanced particle concentrations, including CCN-sized particles. In some cases, the magnitude of precipitation-related source equals or surpasses corresponding removal effect. Our findings highlight the importance of cloud-processed material in determining near-surface particle concentrations and the value of long-term in situ observations for understanding aerosol particle life cycle. Robust patterns emerge from sufficiently long data series, allowing for quantitative assessment of the large-scale significance of new phenomena observed in case studies.
  •  
4.
  • Kommula, S. M., et al. (författare)
  • Effect of Long-Range Transported Fire Aerosols on Cloud Condensation Nuclei Concentrations and Cloud Properties at High Latitudes
  • 2024
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 51:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Active vegetation fires in south-eastern (SE) Europe resulted in a notable increase in the number concentration of aerosols and cloud condensation nuclei (CCN) particles at two high latitude locations—the SMEAR IV station in Kuopio, Finland, and the Zeppelin Observatory in Svalbard, high Arctic. During the fire episode aerosol hygroscopicity κ slightly increased at SMEAR IV and at the Zeppelin Observatory κ decreased. Despite increased κ in high CCN conditions at SMEAR IV, the aerosol activation diameter increased due to the decreased supersaturation with an increase in aerosol loading. In addition, at SMEAR IV during the fire episode, in situ measured cloud droplet number concentration (CDNC) increased by a factor of ∼7 as compared to non-fire periods which was in good agreement with the satellite observations (MODIS, Terra). Results from this study show the importance of SE European fires for cloud properties and radiative forcing in high latitudes.
  •  
5.
  • Pereira Freitas, Gabriel, 1993-, et al. (författare)
  • Contribution of primary biological aerosol particles to low-level Arctic cloud condensation nuclei
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Mixed-phase clouds (MPC) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions critically rely on the ice content of MPC which, in turn, partly depends on the availability of ice nucleating particles (INP). INP sources and concentrations are poorly understood in the Arctic. Recently, INP active at high temperatures were linked to be primary biological aerosol particles (PBAP). Here, we investigated for a full year the PBAP abundance and variability within cloud residuals, directly sampled by a multiparameter bioaerosol spectrometer coupled to a ground-based counterflow virtual impactor inlet at the Zeppelin Observatory (475 m asl), Ny-Ålesund, Svalbard. PBAP concentrations (10−3–10−2L−1) and contributions to coarse-mode aerosol (1 in every 103–104) within cloud residuals were found to be close to those expected for concentrations of high-temperature INP. Transmission electron microscopy also confirmed the presence of PBAP, most likely bacteria, within the cloud residual samples. Seasonally, our results reveal an elevated presence of PBAP within cloud residuals during the summer. Parallel water vapor isotope measurements points towards a link between summer clouds and regionally sourced air masses. Low-level MPC were predominantly observed at the beginning and end of summer, and one explanation for their presence is the existence of high-temperature INP. In this study, we present observational evidence that PBAP might play a role in determining the phase of low-level Arctic clouds, with potential implications for the Arctic climate given ongoing changes in the hydrological and biogeochemical cycles that influence the PBAP flux in and towards the Arctic.
  •  
6.
  • Pereira Freitas, Gabriel, 1993-, et al. (författare)
  • Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with transmission electronic microscopy analysis supporting the presence of PBAP. We find that PBAP concentrations range between 10−3–10−1 L−1 and peak in summer. Evidences suggest that the terrestrial Arctic biosphere is an important regional source of PBAP, given the high correlation to air temperature, surface albedo, surface vegetation and PBAP tracers. PBAP clearly correlate with high-temperature ice nucleating particles (INP) (>-15 °C), of which a high a fraction (>90%) are proteinaceous in summer, implying biological origin. These findings will contribute to an improved understanding of sources and characteristics of Arctic PBAP and their links to INP.
  •  
7.
  • Platt, Stephen M., et al. (författare)
  • Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:5, s. 3321-3369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.
  •  
8.
  • Zieger, Paul, 1978-, et al. (författare)
  • Black carbon scavenging by low-level Arctic clouds
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) from anthropogenic and natural sources has a pronounced climatic effect on the polar environment. The interaction of BC with low-level Arctic clouds, important for understanding BC deposition from the atmosphere, is studied using the first long-term observational data set of equivalent black carbon (eBC) inside and outside of clouds observed at Zeppelin Observatory, Svalbard. We show that the measured cloud residual eBC concentrations have a clear seasonal cycle with a maximum in early spring, due to the Arctic haze phenomenon, followed by cleaner summer months with very low concentrations. The scavenged fraction of eBC was positively correlated with the cloud water content and showed lower scavenged fractions at low temperatures, which may be due to mixed-phase cloud processes. A trajectory analysis revealed potential sources of eBC and the need to ensure that aerosol-cloud measurements are collocated, given the differences in air mass origin of cloudy and non-cloudy periods. Black carbon in the Arctic has pronounced climatic effects, whilst residing in the atmosphere or after being deposited. Here long-term observations of black carbon inside Arctic clouds are used to study their seasonality, sources and links to other meteorological parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy