SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hibbett D. S.) "

Sökning: WFRF:(Hibbett D. S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hibbett, D. S., et al. (författare)
  • A higher-level phylogenetic classification of the Fungi
  • 2007
  • Ingår i: Mycological Research. - : Elsevier BV. - 0953-7562 .- 1469-8102. ; 111, s. 509-547
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecarioromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotiria. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of 'basal' Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella. (c) 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
  •  
2.
  • Binder, M., et al. (författare)
  • New orders of Agaricomycetidae Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae were dominated by corticioid forms
  • 2010
  • Ingår i: Mycologia. - : Informa UK Limited. - 0027-5514 .- 1557-2536. ; 102:4, s. 865-880
  • Tidskriftsartikel (refereegranskat)abstract
    • The Agaricomycetidae is one of the most morphologically diverse clades of Basidiomycota that includes the well known Agaricales and Boletales, which are dominated by pileate-stipitate forms, and the more obscure Atheliales, which is a relatively small group of resupinate taxa. This study focused taxon sampling on resupinate forms that may be related to these groups, aimed at resolving the early branching clades in the major groups of Agaricomycetidae. A specific goal was to resolve with confidence sister group relationships among Agaricales, Boletales and Atheliales, a difficult task based on conflicting results concerning the placement of the Atheliales. To this end we developed a six-locus nuclear dataset (nuc-ssu, nuc-lsu, 5.8S, rpb1, rpb2 and tef1) for 191 species, which was analyzed with maximum parsimony, maximum likelihood and Bayesian methods. Our analyses of these data corroborated the view that the Boletales are closely related to athelioid forms. We also identified an additional early branching clade within the Agaricomycetidae that is composed primarily of resupinate forms, as well as a few morphologically more elaborate forms including Plicaturopsis and Podoserpula. This clade, which we describe here as the new order Amylocorticiales, is the sister group of the Agaricales. We introduce a second order, the Jaapiales, for the lone resupinate genus Jaapia consisting of two species only. The Jaapiales is supported as the sister group of the remainder of the Agaricomycetidae, suggesting that the greatest radiation of pileatestipitate mushrooms resulted from the elaboration of resupinate ancestors.
  •  
3.
  • Binder, M., et al. (författare)
  • The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes)
  • 2005
  • Ingår i: Systematics and Biodiversity. - 1477-2000. ; 3:2, s. 113-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenetic relationships of resupinate Homobasidiomycetes (Corticiaceae s. lat. and others) were studied using ribosomal DNA (rDNA) sequences from a broad sample of resupinate and nonresupinate taxa. Two datasets were analysed using parsimony, a core dataset of 142 species, each of which is represented by four rDNA regions (mitochondrial and nuclear large and small subunits), and a full dataset of 656 species, most of which were represented only by nuclear large subunit rDNA sequences. Both datasets were analysed using traditional heuristic methods with bootstrapping, and the full dataset was also analysed with the Parsimony Ratchet, using equal character weights and six-parameter weighted parsimony. Analyses of both datasets supported monophyly of the eight major clades of Homobasidiomycetes recognised by Hibbett and Thorn, as well as independent lineages corresponding to the Gloeophyllum clade, corticioid clade and Jaapia argillacea. Analyses of the full dataset resolved two additional groups, the athelioid clade and trechisporoid clade (the latter may be nested in the polyporoid clade). Thus, there are at least 12 independent clades of Homobasidiomycetes. Higher-level relationships among the major clades are not resolved with confidence. Nevertheless, the euagarics clade, bolete clade, athelioid clade and Jaapia argillacea are consistently resolved as a monophyletic group, whereas the cantharelloid clade, gomphoid-phalloid clade and hymenochaetoid clade are placed at the base of the Homobasidiomycetes, which is consistent with the preponderance of imperforate parenthesomes in those groups. Resupinate forms occur in each of the major clades of Homobasidiomycetes, some of which are composed mostly or exclusively of resupinate forms (athelioid clade, corticioid clade, trechisporoid clade, Jaapia). The largest concentrations of resupinate forms occur in the polyporoid clade, russuloid clade and hymenochaetoid clade. The cantharelloid clade also includes many resupinate forms, including some that have traditionally been regarded as heterobasidiomycetes (Sebacinaceae, Tulasnellales, Ceratobasidiales). The euagarics clade, which is by far the largest clade in the Homobasidiomycetes, has the smallest fraction of resupinate species. Results of the present study are compared with recent phylogenetic analyses, and a table summarising the phylogenetic distribution of resupinate taxa is presented, as well as notes on the ecology of resupinate forms and related Homobasidiomycetes
  •  
4.
  • Hibbett, David S., et al. (författare)
  • Agaricomycetes
  • 2014
  • Ingår i: The Mycota. - Berlin : Springer. - 9783642553172 ; , s. 373-429
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Agaricomycetes includes ca. 21,000 described species of mushroom-forming fungi that function as decayers, pathogens, and mutualists in both terrestrial and aquatic habitats. The morphological diversity of Agaricomycete fruiting bodies is unparalleled in any other group of fungi, ranging from simple corticioid forms to complex, developmentally integrated forms (e.g., stinkhorns). In recent years, understanding of the phylogenetic relationships and biodiversity of Agaricomycetes has advanced dramatically, through a combination of polymerase chain reaction-based multilocus phylogenetics, phylogenomics, and molecular environmental surveys. Agaricomycetes is strongly supported as a clade and includes several groups formerly regarded as Heterobasidiomycetes, namely the Auriculariales, Sebacinales, and certain Cantharellales (Tulasnellaceae and Ceratobasidiaceae). The Agaricomycetes can be divided into 20 mutually exclusive clades that have been treated as orders. This chapter presents an overview of the phylogenetic diversity of Agaricomycetes, emphasizing recent molecular phylogenetic studies.
  •  
5.
  •  
6.
  • Hibbett, D. S., et al. (författare)
  • Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences
  • 2011
  • Ingår i: Fungal Biology Reviews. - 1749-4613. ; 25:1, s. 38-47
  • Forskningsöversikt (refereegranskat)abstract
    • Fungal taxonomy seeks to discover, describe, and classify all species of Fungi and provide tools for their identification. About 100,000 fungal species have been described so far, but it has been estimated that there may be from 1.5 to 5.1 million extant fungal species. Over the last decade, about 1200 new species of Fungi have been described in each year. At that rate, it may take up to 4000 y to describe all species of Fungi using current specimen-based approaches. At the same time, the number of molecular operational taxonomic units (MOTUs) discovered in ecological surveys has been increasing dramatically. We analyzed ribosomal RNA internal transcribed spacer (ITS) sequences in the GenBank nucleotide database and classified them as “environmental” or “specimen-based”. We obtained 91,225 sequences, of which 30,217 (33 %) were of environmental origin. Clustering at an average 93 % identity in extracted ITS1 and ITS2 sequences yielded 16,969 clusters, including 6230 (37 %) clusters with only environmental sequences, and 2223 (13 %) clusters with both environmental and specimen-based sequences. In 2008 and 2009, the number of purely environmental clusters deposited in GenBank exceeded the number of species described based on specimens, and this does not include the huge number of unnamed MOTUs discovered in pyrosequencing studies. To enable communication about fungal diversity, there is a pressing need to develop classification systems based on environmental sequences. Assigning Latin binomials to MOTUs would promote their integration with specimen-based taxonomic databases, whereas the use of numerical codes for MOTUs would perpetuate a disconnect with the taxonomic literature. MOTUs could be formally named under the existing International Code of Botanical Nomenclature if the concept of a nomenclatural type was expanded to include environmental samples or illustrations of sequence chromatograms (or alignments). Alternatively, a “candidate species” category could be created for Fungi, based on the candidatus taxon status employed by microbiologists.
  •  
7.
  • Kohler, Annegret, et al. (författare)
  • Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 176-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.
  •  
8.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Towards an automated phylogenetic classification of homobasidiomycetes
  • 2004
  • Ingår i: Mycological Society of America (MSA) Meeting 2004.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The prospects of a phylogeny-driven classification of the higher fungi are discussed, and a new software package - mor - that seeks to facilitate such classifications is presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy