SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoiom ) "

Sökning: WFRF:(Hoiom )

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Barrett, Jennifer H., et al. (författare)
  • Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 136:6, s. 1351-1360
  • Tidskriftsartikel (refereegranskat)abstract
    • At least 17 genomic regions are established as harboring melanoma susceptibility variants, in most instances with genome-wide levels of significance and replication in independent samples. Based on genome-wide single nucleotide polymorphism (SNP) data augmented by imputation to the 1,000 Genomes reference panel, we have fine mapped these regions in over 5,000 individuals with melanoma (mainly from the GenoMEL consortium) and over 7,000 ethnically matched controls. A penalized regression approach was used to discover those SNP markers that most parsimoniously explain the observed association in each genomic region. For the majority of the regions, the signal is best explained by a single SNP, which sometimes, as in the tyrosinase region, is a known functional variant. However in five regions the explanation is more complex. At the CDKN2A locus, for example, there is strong evidence that not only multiple SNPs but also multiple genes are involved. Our results illustrate the variability in the biology underlying genome-wide susceptibility loci and make steps toward accounting for some of the missing heritability. What's new? In genome-wide association studies, researchers identify genetic variants that frequently associate with a particular disease, though the variants identified may not contribute to the molecular cause of the disease. This study took a closer look at 17 regions associated with melanoma, fine mapping the regions both in people with melanoma and in healthy controls. Though single SNPs account for the association in some regions, they found that in a few regions, several SNPs - and possibly multiple genes - contributed to the association signal. These findings illustrate the importance of not overlooking the interaction between multiple genetic markers when conducting such studies.
  •  
3.
  • Bishop, D. Timothy, et al. (författare)
  • Genome-wide association study identifies three loci associated with melanoma risk
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:8, s. 920-925
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a genome-wide association study of melanoma conducted by the GenoMEL consortium based on 317K tagging SNPs for 1,650 selected cases and 4,336 controls, with replication in an additional two cohorts (1,149 selected cases and 964 controls from GenoMEL, and a population-based case-control study in Leeds of 1,163 cases and 903 controls). The genome-wide screen identified five loci with genotyped or imputed SNPs reaching P < 5 x 10(-7). Three of these loci were replicated: 16q24 encompassing MC1R (combined P = 2.54 x 10(-27) for rs258322), 11q14-q21 encompassing TYR (P = 2.41 x 10(-14) for rs1393350) and 9p21 adjacent to MTAP and flanking CDKN2A (P = 4.03 x 10(-7) for rs7023329). MC1R and TYR are associated with pigmentation, freckling and cutaneous sun sensitivity, well-recognized melanoma risk factors. Common variants within the 9p21 locus have not previously been associated with melanoma. Despite wide variation in allele frequency, these genetic variants show notable homogeneity of effect across populations of European ancestry living at different latitudes and show independent association to disease risk.
  •  
4.
  •  
5.
  •  
6.
  • Das, I, et al. (författare)
  • AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma
  • 2020
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 27:7, s. 2081-2098
  • Tidskriftsartikel (refereegranskat)abstract
    • Cutaneous malignant melanoma (CMM) is the deadliest form of skin cancer and clinically challenging due to its propensity to develop therapy resistance. Reactive oxygen species (ROS) can induce DNA damage and play a significant role in CMM. MTH1 protein protects from ROS damage and is often overexpressed in different cancer types including CMM. Herein, we report that MTH1 inhibitor TH1579 induced ROS levels, increased DNA damage responses, caused mitotic arrest and suppressed CMM proliferation leading to cell death both in vitro and in an in vivo xenograft CMM zebrafish disease model. TH1579 was more potent in abrogating cell proliferation and inducing cell death in a heterogeneous co-culture setting when compared with CMM standard treatments, vemurafenib or trametinib, showing its broad anticancer activity. Silencing MTH1 alone exhibited similar cytotoxic effects with concomitant induction of mitotic arrest and ROS induction culminating in cell death in most CMM cell lines tested, further emphasizing the importance of MTH1 in CMM cells. Furthermore, overexpression of receptor tyrosine kinase AXL, previously demonstrated to contribute to BRAF inhibitor resistance, sensitized BRAF mutant and BRAF/NRAS wildtype CMM cells to TH1579. AXL overexpression culminated in increased ROS levels in CMM cells. Moreover, silencing of a protein that has shown opposing effects on cell proliferation, CAV-1, decreased sensitivity to TH1579 in a BRAF inhibitor resistant cell line. AXL-MTH1 and CAV-1-MTH1 mRNA expressions were correlated as seen in CMM clinical samples. Finally, TH1579 in combination with BRAF inhibitor exhibited a more potent cell killing effect in BRAF mutant cells both in vitro and in vivo. In summary, we show that TH1579-mediated efficacy is independent of BRAF/NRAS mutational status but dependent on the expression of AXL and CAV-1.
  •  
7.
  • Das, I, et al. (författare)
  • Combining ERBB family and MET inhibitors is an effective therapeutic strategy in cutaneous malignant melanoma independent of BRAF/NRAS mutation status
  • 2019
  • Ingår i: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 10:9, s. 663-
  • Tidskriftsartikel (refereegranskat)abstract
    • Current treatment modalities for disseminated cutaneous malignant melanoma (CMM) improve survival; however, relapses are common. A number of receptor tyrosine kinases (RTKs) including EGFR and MET have been reported to be involved in CMM metastasis and in the development of resistance to therapy, targeting the mitogen-activated protein kinase (MAPK pathway). IHC analysis showed that patients with higher MET protein expression had a significantly shorter overall survival. In addition, silencing of MET caused an upregulation of EGFR and p-AKT, which was abrogated by concomitant silencing of MET and EGFR in CMM cells resistant to MAPK-targeting drugs. We therefore explored novel treatment strategies using clinically approved drugs afatinib (ERBB family inhibitor) and crizotinib (MET inhibitor), to simultaneously block MET and ERBB family RTKs. The effects of the combination were assessed in cell culture and spheroid models using established CMM and patient-derived short-term cell lines, and an in vivo xenograft mouse model. The combination had a synergistic effect, promoting cell death, concomitant with a potent downregulation of migratory and invasive capacity independent of their BRAF/NRAS mutational status. Furthermore, the combination attenuated tumor growth rate, as ascertained by the significant reduction of Ki67 expression and induced DNA damage in vivo. Importantly, this combination therapy had minimal therapy-related toxicity in mice. Lastly, the cell cycle G2 checkpoint kinase WEE1 and the RTK IGF1R, non-canonical targets, were altered upon exposure to the combination. Knockdown of WEE1 abrogated the combination-mediated effects on cell migration and proliferation in BRAF mutant BRAF inhibitor-sensitive cells, whereas WEE1 silencing alone inhibited cell migration in NRAS mutant cells. In summary, our results show that afatinib and crizotinib in combination is a promising alternative targeted therapy option for CMM patients, irrespective of BRAF/NRAS mutational status, as well as for cases where resistance has developed towards BRAF inhibitors.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy