SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holling S) "

Sökning: WFRF:(Holling S)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cumming, Graeme S., et al. (författare)
  • Resilience, experimentation, and scale mismatches in social-ecological landscapes
  • 2013
  • Ingår i: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 28:6, s. 1139-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing a resilient landscape depends heavily on finding an appropriate match between the scales of demands on ecosystems by human societies and the scales at which ecosystems are capable of meeting these demands. While the dynamics of environmental change and ecosystem service provision form the basis of many landscape ecology studies, enhancing landscape resilience is, in many ways, a problem of establishing relevant institutions that act at appropriate scales to modify and moderate demand for ecosystem services and the resulting exploitation of ecosystems. It is also of central importance for landscape sustainability that institutions are flexible enough to adapt to changes in the external environment. The model provided by natural ecosystems suggests that it is only by encouraging and testing a diversity of approaches that we will be able to build landscapes that are resilient to future change. We advocate an approach to landscape planning that involves growing learning institutions on the one hand, and on the other, developing solutions to current problems through deliberate experimentation coupled with social learning processes.
  •  
3.
  •  
4.
  • Muhle, Franz, et al. (författare)
  • Blind test comparison on the wake behind a yawed wind turbine
  • 2018
  • Ingår i: Wind Energy Science. - : COPERNICUS GESELLSCHAFT MBH. - 2366-7443 .- 2366-7451. ; 3:2, s. 883-903
  • Tidskriftsartikel (refereegranskat)abstract
    • This article summarizes the results of the "Blind test 5" workshop, which was held in Visby, Sweden, in May 2017. This study compares the numerical predictions of the wake flow behind a model wind turbine operated in yaw to experimental wind tunnel results. Prior to the workshop, research groups were invited to predict the turbine performance and wake flow properties using computational fluid dynamics (CFD) methods. For this purpose, the power, thrust, and yaw moments for a 30 degrees yawed model turbine, as well as the wake's mean and turbulent streamwise and vertical flow components, were measured in the wind tunnel at the Norwegian University of Science and Technology (NTNU). In order to increase the complexity, a non-yawed downstream turbine was added in a second test case, while a third test case challenged the modelers with a new rotor and turbine geometry. Four participants submitted predictions using different flow solvers, three of which were based on large eddy simulations (LES) while another one used an improved delayed detached eddy simulation (IDDES) model. The performance of a single yawed turbine was fairly well predicted by all simulations, both in the first and third test cases. The scatter in the downstream turbine performance predictions in the second test case, however, was found to be significantly larger. The complex asymmetric shape of the mean streamwise and vertical velocities was generally well predicted by all the simulations for all test cases. The largest improvement with respect to previous blind tests is the good prediction of the levels of TKE in the wake, even for the complex case of yaw misalignment. These very promising results confirm the mature development stage of LES/DES simulations for wind turbine wake modeling, while competitive advantages might be obtained by faster computational methods.
  •  
5.
  •  
6.
  • Holling, C.S., et al. (författare)
  • Panarchies and discontinuities
  • 2008
  • Ingår i: Discontinuities in Ecosystems and Other Complex Systems. - : Columbia University Press, New York. ; , s. 3-19
  • Bokkapitel (refereegranskat)
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy