SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isaksson Margareth) "

Sökning: WFRF:(Isaksson Margareth)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bartuma, Hammurabi, et al. (författare)
  • Gene expression and single nucleotide polymorphism array analyses of spindle cell lipomas and conventional lipomas with 13q14 deletion.
  • 2011
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 50, s. 619-632
  • Tidskriftsartikel (refereegranskat)abstract
    • Spindle cell lipomas (SCL) are circumscribed, usually s.c. tumors that typically occur on the posterior neck, shoulder, and back of middle aged men. Cytogenetically, almost all SCL are characterized by deletions of chromosome arm 13q, often in combination with loss of 16q. Deletions of 13q are seen also in approximately 15% of conventional lipomas. Through single nucleotide polymorphism (SNP) array analyses, we identified two minimal deleted regions (MDR) in 13q14 in SCL. In MDR1, four genes were located, including the tumor suppressor gene RB1. MDR1 in SCL overlapped with the MDR detected in conventional lipomas with 13q14 deletion. In MDR2 in SCL there were 34 genes and the two microRNA (miRNA) genes miR-15a and miR-16-1. Global gene expression analysis was used to study the impact of the deletions on genes mapping to the two SCL-associated MDR. Five genes (C13orf1, DHRS12, ATP7B, ALG11, and VPS36) in SCL and one gene (C13orf1) in conventional lipomas with 13q-deletions were found to be significantly underexpressed compared with control tissues. Quantitative real-time PCR showed that miR-16-1 was expressed at lower levels in SCL than in the control samples. No mutations were found at sequencing of RB1, miR-15a, and miR-16-1. Our findings further delineate the target region for the 13q deletion in SCL and conventional lipomas and show that the deletions are associated with down-regulated expression of several genes, notably C13orf1, which was the only gene to be significantly down-regulated in both tumor types. © 2011 Wiley-Liss, Inc.
  •  
2.
  • Beverloo, H. Berna, et al. (författare)
  • Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13)
  • 2001
  • Ingår i: Cancer Research. - 1538-7445. ; 61:14, s. 5374-5377
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, we and others reported a recurrent t(7;12)(q36;p13) found in myeloid malignancies in children < or =18 months of age and associated with a poor prognosis. Fluorescence in situ hybridization studies mapped the 12p13 breakpoint to the first intron of ETV6 and narrowed down the region of 7q36 involved. By using the sequences made public recently by the Human Genome Project, two candidate genes in 7q36 were identified: the homeobox gene HLXB9 and c7orf3, a gene with unknown function. Reverse transcription-PCR of two cases with t(7;12), using primers for c7orf3 and ETV6, was negative. However, reverse transcription-PCR for HLXB9-ETV6 demonstrated alternative splicing; the two major bands corresponded to fusion of exon 1 of HLXB9 to exons 2 and 3, respectively, of ETV6. The reciprocal ETV6-HLXB9 transcript was not detected. It remains to be elucidated if the leukemic phenotype is attributable to the formation of the HLXB9-ETV6 fusion protein, which includes the helix-loop-helix and E26 transformation-specific DNA binding domains of ETV6 or to the disruption of the normal ETV6 protein.
  •  
3.
  • Broberg Palmgren, Karin, et al. (författare)
  • Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35-37 and 12q13-15.
  • 2002
  • Ingår i: International Journal of Oncology. - 1019-6439. ; 21:2, s. 321-326
  • Tidskriftsartikel (refereegranskat)abstract
    • Rearrangements of chromosome bands 12q13-15 are frequent in various benign mesenchymal and epithelial tumors, and the gene HMGA2 seems to be the most common target within this chromosome region. In the majority of cases, the rearrangements result in a fusion of the first three exons of HMGA2 with different translocation partners. Despite the large number of HMGA2 mutations that have been reported, very little is known about the fusion partners. In this study, we have characterized a recurrent fusion of the first three exons of HMGA2 5' to the G protein-coupled receptor gene (RDC1) in lipomas with rearrangements involving chromosome bands 2q35-37 and 12q13-15, one of several recurrent chromosomal rearrangements in lipomas. The functional impact of the fusion is truncation of HMGA2, because the RDC1 part contributes with a stop codon one amino acid downstream of the breakpoint. The breakpoint within RDC1 was localized in a previously uncharacterized exon of the gene, and our data suggest that RDC1 is subject to alternative splicing.
  •  
4.
  • Davidsson, Josef, et al. (författare)
  • Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22-32.3
  • 2007
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 16:18, s. 2215-2225
  • Tidskriftsartikel (refereegranskat)abstract
    • Although gain of 1q occurs in 25% of Burkitt lymphomas (BLs) and 10% of pediatric high hyperdiploid acute lymphoblastic leukemias (ALLs), little is known about the origin, molecular genetic characteristics and functional outcome of dup(1q) in these disorders. Ten dup(1q)-positive BLs/ALLs were investigated by tiling resolution (32k) array CGH analysis, which revealed that the proximal breakpoints in all cases were near-centromeric, in eight of them clustering within a 1.4 Mb segment in 1q12-21.1. The 1q distal breakpoints were heterogeneous, being more distal in the ALLs than in the BLs. The minimally gained segments in the ALLs and BLs were 57.4 Mb [dup(1)(q22q32.3)] and 35 Mb [dup(1)(q12q25.2)], respectively. Satellite 11 DNA on 1q was not hypomethylated, as ascertained by Southern blot analyses of 15 BLs/ALLs with and without gain of 1q, indicating that aberrant methylation was not involved in the origin of dup(1q), as previously suggested for other neoplasms with 1q rearrangements. Global gene expression analyses revealed that five genes in the minimally 57.4 Mb gained region-B4GALT3, DAP3, RGS16, TMEM183A and UCK2-were significantly overexpressed in dup(1q)-positive ALLs compared with high hyperdiploid ALLs without dup(1q). The DAP3 and UCK2 genes were among the most overexpressed genes in the BL case with gain of 1q investigated. The DAP3 protein has been reported to be highly expressed in invasive glioblastoma multiforme cells, whereas expression of the UCK2 protein has been correlated with sensitivity to anticancer drugs. However, involvement of these genes in dup(1q)-positive ALLs and BLs has previously not been reported.
  •  
5.
  • Fioretos, Thoas, et al. (författare)
  • Fusion of the BCR and the fibroblast growth factor receptor-1 (FGFR1) genes as a result of t(8;22)(p11;q11) in a myeloproliferative disorder: the first fusion gene involving BCR but not ABL
  • 2001
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 98:11, s. 558-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Constitutive activation of tyrosine kinases as a consequence of chromosomal translocations, forming fusion genes, plays an important role in the development of hematologic malignancies, in particular, myeloproliferative syndromes (MPSs). In this respect, the t(9;22)(q34;q11) that results in the BCR/ABL fusion gene in chronic myeloid leukemia is one of the best-studied examples. The fibroblast growth factor receptor 1 (FGFR1) gene at 8p11 encodes a transmembrane receptor tyrosine kinase and is similarly activated by chromosomal translocations, in which three alternative genes-ZNF198 at 13q12, CEP110 at 9q34, and FOP at 6q27-become fused to the tyrosine kinase domain of FGFR1. These 8p11-translocations are associated with characteristic morphologic and clinical features, referred to as "8p11 MPS." In this study, we report the isolation and characterization of a novel fusion gene in a hematologic malignancy with a t(8;22)(p11;q11) and features suggestive of 8p11 MPS. We show that the breakpoints in the t(8;22) occur within introns 4 and 8 of the BCR and FGFR1 genes, respectively. On the mRNA level, the t(8;22) results in the fusion of BCR exons 1-4 in-frame with the tyrosine kinase domain of FGFR1 as well as in the expression of a reciprocal FGFR1/BCR chimeric transcript. By analogy with data obtained from previously characterized fusion genes involving FGFR1 and BCR/ABL, it is likely that the oligomerization domain contributed by BCR is critical and that its dimerizing properties lead to aberrant FGFR1 signaling and neoplastic transformation.
  •  
6.
  •  
7.
  • Hansén Nord, Karolin, et al. (författare)
  • Concomitant deletions of tumor suppressor genes MEN1 and AIP are essential for the pathogenesis of the brown fat tumor hibernoma.
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; Dec, s. 21122-21127
  • Tidskriftsartikel (refereegranskat)abstract
    • Hibernomas are benign tumors with morphological features resembling brown fat. They consistently display cytogenetic rearrangements, typically translocations, involving chromosome band 11q13. Here we demonstrate that these aberrations are associated with concomitant deletions of AIP and MEN1, tumor suppressor genes that are located 3 Mb apart and that underlie the hereditary syndromes pituitary adenoma predisposition and multiple endocrine neoplasia type I. MEN1 and AIP displayed a low expression in hibernomas whereas the expression of genes up-regulated in brown fat-PPARA, PPARG, PPARGC1A, and UCP1-was high. Thus, loss of MEN1 and AIP is likely to be pathogenetically essential for hibernoma development. Simultaneous loss of two tumor suppressor genes has not previously been shown to result from a neoplasia-associated translocation. Furthermore, in contrast to the prevailing assumption that benign tumors harbor relatively few genetic aberrations, the present analyses demonstrate that a considerable number of chromosome breaks are involved in the pathogenesis of hibernoma.
  •  
8.
  • Holmquist Mengelbier, Linda, et al. (författare)
  • Deletions of 16q in Wilms Tumors Localize to Blastemal-Anaplastic Cells and Are Associated with Reduced Expression of the IRXB Renal Tubulogenesis Gene Cluster.
  • 2010
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 177:5, s. 2609-2621
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms tumor is the most common pediatric renal neoplasm, but few molecular prognostic markers have been identified for this tumor. Somatic deletion in the long arm of chromosome 16 (16q) is known to predict a less favorable outcome in Wilms tumor, but the underlying molecular mechanisms are not known. We show that 16q deletions are typically confined to immature anaplastic-blastic tumor elements, while deletions are absent in maturing tumor components. The smallest region of deletion overlap mapped to a 1.8-Mb segment containing the IRXB gene cluster including IRX3, IRX5, and IRX6, of which IRX3 is a recently identified regulator of tubular maturation during nephrogenesis. Tumors with 16q deletion showed a lower overall mRNA expression of IRXB genes, and 16q-deleted tumor cells failed to express IRX3 while it was expressed in differentiating tubular tumor elements with intact 16q. Consistent with a role for IRX3 in tubular differentiation, gene sets linked to Notch signaling, Rho signaling, and ion channel activity were enriched in tumors with high IRX3 expression, while WTs with low expression were enriched for gene sets linked to cell cycle progression. Low mRNA levels of IRXB genes were associated with diffuse anaplasia, high-stage disease, and death. A disturbed balance between tubular differentiation and self-renewal of anaplastic-blastic elements may thus be one mechanism linking 16q deletion to adverse outcome in Wilms tumor.
  •  
9.
  •  
10.
  • Karrman, Kristina, et al. (författare)
  • The t(X;7)(q22;q34) in paediatric T-cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T-cell receptor beta locus.
  • 2009
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 144, s. 546-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary The t(X;7)(q22;q34), a translocation not previously reported in a neoplastic disorder, was identified and molecularly characterised in a paediatric T-cell acute lymphoblastic leukaemia (T-ALL), subsequently shown also to harbour a deletion of 6q, a STIL/TAL1 fusion and an activating NOTCH1 mutation. The t(X;7) was further investigated using fluorescence in situ hybridisation (FISH), real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot analyses. FISH revealed a breakpoint at the T-cell receptor beta locus at 7q34 and mapped the corresponding breakpoint to Xq22.3. The latter region contains only two known genes, namely insulin receptor substrate 4 (IRS4) and collagen, type IV, alpha 5 (COL4A5), the expressions of which were analysed by the use of RQ-PCR. COL4A5 was not differentially expressed in the t(X;7)-positive sample compared to five T-ALL controls. However, a marked, 1000-fold overexpression of IRS4 was identified. Western blot analysis with a monoclonal antibody against IRS4 showed overexpression also at the protein level. Considering that forced expression of several members of the IRS family has been shown to result in increased cell proliferation, for example in haematopoietic cells, we hypothesise that the IRS4 up-regulation in T-ALL is pathogenetically important as a mitogenic stimulus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy