SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jöns Klaus D.) "

Sökning: WFRF:(Jöns Klaus D.)

  • Resultat 1-10 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Basset, F. Basso, et al. (författare)
  • Entanglement Swapping with Photons Generated on Demand by a Quantum Dot
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 123:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of nonclassical light were used for seminal demonstration of entanglement swapping, but applications in quantum technologies demand push-button operation requiring single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent prerequisites on the efficiency and purity of the generation of entangled states. Here we show a proof-of-concept demonstration of all-photonic entanglement swapping with pairs of polarization-entangled photons generated on demand by a GaAs quantum dot without spectral and temporal filtering. Moreover, we develop a theoretical model that quantitatively reproduces the experimental data and provides insights on the critical figures of merit for the performance of the swapping operation. Our theoretical analysis also indicates how to improve stateof-the-art entangled-photon sources to meet the requirements needed for implementation of quantum dots in long-distance quantum communication protocols.
  •  
3.
  • Elshaari, Ali W., et al. (författare)
  • Hybrid quantum photonic integrated circuits
  • 2018
  • Ingår i: Proceedings - International Conference Laser Optics 2018, ICLO 2018. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538636121
  • Konferensbidrag (refereegranskat)abstract
    • Quantum photonic integrated circuits require a scalable approach to integrate bright on-demand sources of entangled photon-pairs in complex on-chip quantum photonic circuits. Currently, the most promising sources are based on III/V semiconductor quantum dots. However, complex photonic circuitry is mainly achieved in silicon photonics due to the tremendous technological challenges in circuit fabrication. We take the best of both worlds by developing a new hybrid on-chip nanofabrication approach, allowing to integrate III/V semiconductor nanowire quantum emitters into silicon-based photonics.
  •  
4.
  • Errando-Herranz, Carlos, 1989-, et al. (författare)
  • Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters
  • 2021
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 8:4, s. 1069-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible. A promising scalable platform is based on two-dimensional (2D) semiconductors. However, resonant excitation and single-photon emission of waveguide-coupled 2D emitters have proven to be elusive. Here, we show a scalable approach using a silicon nitride photonic waveguide to simultaneously strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode. We demonstrate the guiding of single photons in the photonic circuit by measuring second-order autocorrelation of g((2))(0) = 0.150 +/- 0.093 and perform on-chip resonant excitation, yielding a g((2))(0) = 0.377 +/- 0.081. Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
  •  
5.
  • Fognini, A., et al. (författare)
  • Dephasing Free Photon Entanglement with a Quantum Dot
  • 2019
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 6:7, s. 1656-1663
  • Tidskriftsartikel (refereegranskat)abstract
    • Generation of photon pairs from quantum dots with near-unity entanglement fidelity has been a long-standing scientific challenge. It is generally thought that the nuclear spins limit the entanglement fidelity through spin flip dephasing processes. However, this assumption lacks experimental support. Here, we show two-photon entanglement with negligible dephasing from an indium rich single quantum dot comprising a nuclear spin of 9/2 when excited quasi-resonantly. This finding is based on a significantly close match between our entanglement measurements and our model that assumes no dephasing and takes into account the detection system's timing jitter and dark counts. We suggest that neglecting the detection system is responsible for the degradation of the measured entanglement fidelity in the past and not the nuclear spins. Therefore, the key to unity entanglement from quantum dots comprises a resonant excitation scheme and a detection system with ultralow timing jitter and dark counts.
  •  
6.
  • Gyger, Samuel, et al. (författare)
  • Reconfigurable frequency coding of triggered single photons in the telecom C–band
  • 2019
  • Ingår i: Optics Express. - : OSA. - 1094-4087. ; 27:10, s. 14400-14406
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we demonstrate reconfigurable frequency manipulation of quantum states of light in the telecom C–band. Triggered single photons are encoded in a superposition state of three channels using sidebands up to 53 GHz created by an off-the-shelf phase modulator. The single photons are emitted by an InAs/GaAs quantum dot grown by metal-organic vapor-phase epitaxy within the transparency window of the backbone fiber optical network. A cross-correlation measurement of the sidebands demonstrates the preservation of the single photon nature; an important prerequisite for future quantum technology applications using the existing telecommunication fiber network.
  •  
7.
  • Haffouz, Sofiane, et al. (författare)
  • Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires : The Role of the Photonic Waveguide
  • 2018
  • Ingår i: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 18:5, s. 3047-3052
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
  •  
8.
  • Hanschke, Lukas, et al. (författare)
  • Origin of Antibunching in Resonance Fluorescence
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 125:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emission.
  •  
9.
  •  
10.
  • Lettner, Thomas, et al. (författare)
  • GaAs Quantum Dot in a Parabolic Microcavity Tuned to Rb-87 D-1
  • 2020
  • Ingår i: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 7:1, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D-1 line (795 nm).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy