SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jiskra Martin) "

Sökning: WFRF:(Jiskra Martin)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dastoor, Ashu, et al. (författare)
  • Arctic mercury cycling
  • 2022
  • Ingår i: Nature Reviews Earth & Environment. - : Springer Nature. - 2662-138X. ; 3:4, s. 270-286
  • Forskningsöversikt (refereegranskat)abstract
    • Anthropogenic mercury (Hg) emissions have driven marked increases in Arctic Hg levels,which are now being impacted by regional warming, with uncertain ecological consequences. This Review presents a comprehensive assessment of the present-day total Hg mass balance in the Arctic. Over 98% of atmospheric Hg is emitted outside the region and is transported to the Arctic via long-range air and ocean transport. Around two thirds of this Hg is deposited in terrestrial ecosystems, where it predominantly accumulates in soils via vegetation uptake. Rivers and coastal erosion transfer about 80 Mg year−1 of terrestrial Hg to the Arctic Ocean, in approximate balance with modelled net terrestrial Hg deposition in the region. The revised Arctic Ocean Hg mass balance suggests net atmospheric Hg deposition to the ocean and that Hg burial in inner-shelf sediments is underestimated (up to >100%), needing seasonal observations of sediment-oceanHg exchange. Terrestrial Hg mobilization pathways from soils and the cryosphere (permafrost, ice, snow and glaciers) remain uncertain. Improved soil, snowpack and glacial Hg inventories, transfer mechanisms of riverine Hg releases under accelerated glacier and soil thaw, coupled atmosphere– terrestrial modelling and monitoring of Hg in sensitive ecosystems such as fjords can help toanticipate impacts on downstream Arctic ecosystems.
  •  
2.
  •  
3.
  • Jiskra, Martin, et al. (författare)
  • Kinetics of Hg(II) Exchange between Organic Ligands, Goethite, and Natural Organic Matter Studied with an Enriched Stable Isotope Approach
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:22, s. 13207-13217
  • Tidskriftsartikel (refereegranskat)abstract
    • The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-,EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxylresin varied greatly from 1.2 days for Hg(OH)(2) to 16 days for Hg(II) cysteine complexes and approximately 250 days for EDTA-bound Hg(10. Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.
  •  
4.
  • Kronberg, Rose-Marie, et al. (författare)
  • Forest harvest contribution to Boreal freshwater methyl mercury load
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:6, s. 825-843
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80year old Norway spruce (Picea abies Karst.) forests with 10 similar watersheds subjected to clear-cutting (CCs). While total Hg soil storage did not change, MeHg pools increased seven times (p=0.006) in the organic topsoil 2 years after clear-cutting. In undulating terrain, situated above the postglacial marine limit (ML) of the ancient Baltic Sea, the mass ratio between flux-weighted MeHg and dissolved organic carbon (MeHg/DOC) in stream runoff increased 1.8 times (p<0.004) as a consequence of forest harvest. When recalculated to 100% clear-cutting of the watershed, the annual MeHg stream export increased 3.8 times (p=0.047). Below the ML, where the terrain was flatter, neither the MeHg/DOC ratio nor the annual export of MeHg differed between REFs and CCs, likely because of the larger contribution of MeHg exported from peaty soils and small wetlands. The most robust measure, MeHg/DOC, was used to calculate MeHg loadings to Boreal headwaters. If the forest harvest effect lasts 10years, clear-cutting increases MeHg runoff by 12-20% in Sweden and 2% in the Boreal zone as a whole. In Sweden, having intensely managed forests, 37% and 56% of MeHg are exported from peatlands and forest soils, respectively, and forest clear-cutting is adding another 6.6%. In the Boreal zone as a whole peatlands and forests soils contribute with 53% and 46%, respectively, and clear-cutting is estimated to add another 1.0%. An expected rapid increase in Boreal forest harvest and disturbance urge for inclusion of land use effects in mercury biogeochemical cycling models at different scales.
  •  
5.
  • Kronberg, Rose-Marie, et al. (författare)
  • Methyl Mercury Formation in Hillslope Soils of Boreal Forests : the Role of Forest Harvest and Anaerobic Microbes
  • 2016
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 50:17, s. 9177-9186
  • Tidskriftsartikel (refereegranskat)abstract
    • Final harvest (clear-cutting) of coniferous boreal forests has been shown to increase streamwater concentrations andexport of the neurotoxin methyl mercury (MeHg) to freshwater ecosystems. Here, the spatial distribution of inorganic Hg and MeHgin soil as a consequence of clear-cutting is reported. A comparison ofsoils at similar positions along hillslopes in four 80 years old Norwayspruce (Picea abies) stands (REFs) with those in four similar stands subjected to clear-cutting (CCs) revealed significantly (p < 0.05)enhanced MeHg concentrations (ng g−1), MeHg areal masses (gha−1), and percent MeHg of HgTOT in O horizons of CCs locatedbetween 1 and 41 m from streams. Inorganic Hg measures did notdiffer between REFs and CCs at any position. The O horizon thickness did not differ between CCs and REFs, but the groundwater table and soil water content were significantly higher at CCs than at REFs. The largest difference in percent MeHg of HgTOT (12times higher at CCs compared to REFs, p = 0.003) was observed in concert with a significant enhancement in soil water content(p = 0.0003) at intermediate hillslope positions (20−38 m from stream), outside the stream riparian zone. Incubationexperiments demonstrated that soils having significantly enhanced soil pools of MeHg after clear-cutting also showed significantlyenhanced methylation potential as compared with similarly positioned soils in mature reference stands. The addition of inhibitorsdemonstrated that sulfate-reducing bacteria (SRB) and methanogens were key methylators. Rates of demethylation did not differbetween CCs and REFs. Our results suggest that enhanced water saturation of organic soils providing readily available electrondonors stimulate Hg-methylating microbes to net formation and buildup of MeHg in O horizons after forest harvest.
  •  
6.
  • Li, Chuxian, et al. (författare)
  • Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes
  • 2023
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we present results from a comprehensive study covering concentrations and isotopic signatures of Hg in an open boreal peatland system to identify post-depositional Hg redox transformation processes. Isotope mass balances suggest photoreduction of HgII is the predominant process by which 30% of annually deposited Hg is emitted back to the atmosphere. Isotopic analyses indicate that above the water table, dark abiotic oxidation decreases peat soil gaseous Hg0 concentrations. Below the water table, supersaturation of gaseous Hg is likely created more by direct photoreduction of rainfall rather than by reduction and release of Hg from the peat soil. Identification and quantification of these light-driven and dark redox processes advance our understanding of the fate of Hg in peatlands, including the potential for mobilization and methylation of HgII.
  •  
7.
  • Wiederhold, Jan G., et al. (författare)
  • Mercury Isotope Signatures in Contaminated Sediments as a Tracer for Local Industrial Pollution Sources
  • 2015
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 49:1, s. 177-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 mu g g(-1)), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF delta Hg-202: -0.2 parts per thousand to -0.5 parts per thousand; MIF Delta Hg-199: -0.05 parts per thousand to -0.10 parts per thousand). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (delta Hg-202: -2.1 parts per thousand to 0.6 parts per thousand; Delta Hg-199: -0.19 parts per thousand to 0.03 parts per thousand) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1 parts per thousand heavier in delta Hg-202 than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy