SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jorgensen Poul) "

Sökning: WFRF:(Jorgensen Poul)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aidas, Kestutis, et al. (författare)
  • The Dalton quantum chemistry program system
  • 2014
  • Ingår i: Wiley Interdisciplinary Reviews. Computational Molecular Science. - : Wiley. - 1759-0876. ; 4:3, s. 269-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
  •  
2.
  • Coriani, Sonia, et al. (författare)
  • Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory
  • 2007
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 126:15, s. 11930-11935
  • Tidskriftsartikel (refereegranskat)abstract
    • A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.
  •  
3.
  • Helgaker, Trygve, et al. (författare)
  • Self-consistent field methods applied to large molecular systems
  • 2006
  • Ingår i: RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B. - : VSP BV-C/O BRILL ACAD PUBL. - 9789004155428 ; , s. 1297-1297
  • Konferensbidrag (refereegranskat)abstract
    • With recent developments in theory and in implementation, Hartree-Fock and density-functional theory (DFT) self-consistent field (SCF) methods can now be applied to large molecular systems, at a cost that scales linearly with system size. In the present talk, such developments are reviewed, with emphasis on the calculation of energy and molecular properties. In particular, it is demonstrated that energies and molecular properties can now be determined entirely in the atomic orbital (AD) basis, with no implicit or explicit introduction of canonical molecular orbitals in the course of the calculation. After a discussion of energy optimization and convergence of the self-consistent field iterations, some applications are presented, with emphasis on polarizabilities and excitation energies and on the comparison of results obtained by Hartree-Fock and DFT theories in extended systems.
  •  
4.
  • Kauczor, Joanna, et al. (författare)
  • On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations
  • 2011
  • Ingår i: Journal of Chemical Theory and Computation. - : AMER CHEMICAL SOC. - 1549-9618 .- 1549-9626. ; 7:6, s. 1610-1630
  • Tidskriftsartikel (refereegranskat)abstract
    • The response equations as occurring in the Hartree-Fock, multiconfigurational self-consistent field, and Kohn-Sham density functional theory have identical matrix structures. The algorithms that are used for solving these equations are discussed, and new algorithms are proposed where trial vectors are split into symmetric and antisymmetric components. Numerical examples are given to compare the performance of the algorithms. The calculations show that the standard response equation for frequencies smaller than the highest occupied molecular orbital-lowest unoccupied molecular orbital gap is best solved using the preconditioned conjugate gradient or conjugate residual algorithms where trial vectors are split into symmetric and antisymmetric components. For larger frequencies in the standard response equation as well as in the damped response equation in general, the preconditioned iterative subspace approach with symmetrized trial vectors should be used. For the response eigenvalue equation, the Davidson algorithm with either paired or symmetrized trial vectors constitutes equally good options.
  •  
5.
  • Kjaergaard, Thomas, et al. (författare)
  • Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories
  • 2009
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 5:8, s. 1997-2020
  • Forskningsöversikt (refereegranskat)abstract
    • A Lagrangian approach has been used to derive gauge-origin independent expressions for two properties that rationalize magneto-optical activity, namely the Verdet constant V(omega) of the Faraday effect and the B term of magnetic circular dichroism. The approach is expressed in terms of an atomic-orbital density-matrix based formulation of response theory and use London atomic orbitals to parametrize the magnetic field dependence. It yields a computational procedure which is both gauge-origin independent and suitable for linear-scaling at the level of time-dependent Hartree-Fock and density functional theory. The formulation includes a modified preconditioned conjugated gradient algorithm, which projects out the excited state component from the solution to the linear response equation. This is required when solving one of the response equations for the determination of the B term and divergence is encountered if this component is not projected out. Illustrative results are reported for the Verdet constant of H-2, HF, CO, N2O, and CH3CH2CH3 and for the B term of pyrimidine, phosphabenzene, and pyridine. The results are benchmarked against gauge-origin independent CCSD values
  •  
6.
  • Salek, Pawel, et al. (författare)
  • Linear-scaling implementation of molecular electronic self-consistent field theory
  • 2007
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 126:11, s. 85-98
  • Tidskriftsartikel (refereegranskat)abstract
    • A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field (SCF) theories is presented and illustrated with applications to molecules consisting of more than 1000 atoms. The diagonalization bottleneck of traditional SCF methods is avoided by carrying out a minimization of the Roothaan-Hall (RH) energy function and solving the Newton equations using the preconditioned conjugate-gradient (PCG) method. For rapid PCG convergence, the Lowdin orthogonal atomic orbital basis is used. The resulting linear-scaling trust-region Roothaan-Hall (LS-TRRH) method works by the introduction of a level-shift parameter in the RH Newton equations. A great advantage of the LS-TRRH method is that the optimal level shift can be determined at no extra cost, ensuring fast and robust convergence of both the SCF iterations and the level-shifted Newton equations. For density averaging, the authors use the trust-region density-subspace minimization (TRDSM) method, which, unlike the traditional direct inversion in the iterative subspace (DIIS) scheme, is firmly based on the principle of energy minimization. When combined with a linear-scaling evaluation of the Fock/Kohn-Sham matrix (including a boxed fitting of the electron density), LS-TRRH and TRDSM methods constitute the linear-scaling trust-region SCF (LS-TRSCF) method. The LS-TRSCF method compares favorably with the traditional SCF/DIIS scheme, converging smoothly and reliably in cases where the latter method fails. In one case where the LS-TRSCF method converges smoothly to a minimum, the SCF/DIIS method converges to a saddle point.
  •  
7.
  • Scipioni, Roberto, et al. (författare)
  • Complementary analyses of aging in a commercial LiFePO4/graphite 26650 cell
  • 2018
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 284, s. 454-468
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we investigate the electrode degradation mechanisms in a commercial 2.5 Ah LiFePO4/ graphite 26650 cylindrical cell. Aged and fresh electrode samples were prepared by cycling two cells respectively five and 22 k times. Subsequently the cells were disassembled in a glovebox and the electrode samples were prepared for electrochemical testing in a 3-electrode setup, and for characterization with XRD, XPS and low-kV FIB/SEM tomography. A 1 mu m thick CEI (cathode electrolyte interface) layer was observed at the electrode/electrolyte interface of the aged LiFePO4 electrode. Relative to the fresh LiFePO4 electrode, the aged electrode exhibited a larger series resistance which indicates the observed degradation layer increases the ionic resistance. In addition, micron-sized agglomerates, probably a mixture of carbonaceous material and decomposition products from the electrolyte, were observed at the electrode/electrolyte interface of the aged graphite electrode. These layers may contribute significantly to the loss of lithium inventory (LLI) in the cell, and to the loss of active material (LAM) in the graphite electrode. Low-voltage FIB/SEM tomography was used to detect local charging effects of graphite particles in the carbon electrode, an effect of poor dissipation of the electric charge to the ground after the sample interaction with the electron beam. The charging effects were primarily observed in the aged electrode and most of the locally charged particles were found to be close to the electrode/electrolyte interface, indicating a poorly percolating graphite network near this interface.
  •  
8.
  • Thorvaldsen, Andreas J., et al. (författare)
  • Analytic ab initio calculations of coherent anti-Stokes Raman scattering (CARS)
  • 2009
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 11:13, s. 2293-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a theory for the analytic calculation of frequency-dependent polarizability gradients, and apply the methodology to the calculation of coherent anti-Stokes Raman scattering (CARS). The formalism used is based on an open-ended theory for the calculation of frequency-dependent molecular response properties of arbitrary order, also including contributions from perturbation-dependent basis sets. An important feature of our approach is the close connection between the formalism-which is fully matrix-based in an atomic orbital basis-and the implementation, allowing for the rapid implementation of higher-order molecular properties. Care is taken to allow the formalism to be utilized with linearly-scaling Hartree-Fock and density-functional theory codes. By avoiding the evaluation of responses due to geometry distortions, only 9 response equations need to be solved for the calculation of the CARS intensities, independent of the size of the molecular system. The theory is illustrated by calculations on a set of polyaromatic hydrocarbons using a DFT/B3LYP force field and Hartree-Fock polarizability gradients. Good agreement with the experimental CARS spectra of these compounds is obtained.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy