SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalderen C.) "

Sökning: WFRF:(Kalderen C.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Michel, M., et al. (författare)
  • Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function
  • 2022
  • Ingår i: Science. - Stockholm : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6600, s. 1471-1476
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed b,d-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging. © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
  •  
2.
  • Tanner, L., et al. (författare)
  • Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required.
  •  
3.
  • Berglund, U. W., et al. (författare)
  • Validation and development of MTH1 inhibitors for treatment of cancer
  • 2016
  • Ingår i: Annals of Oncology. - : Elsevier BV. - 0923-7534 .- 1569-8041. ; 27:12, s. 2275-2283
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previously, we showed cancer cells rely on the MTH1 protein to prevent incorporation of otherwise deadly oxidised nucleotides into DNA and we developed MTH1 inhibitors which selectively kill cancer cells. Recently, several new and potent inhibitors of MTH1 were demonstrated to be non-toxic to cancer cells, challenging the utility of MTH1 inhibition as a target for cancer treatment. Material and methods: Human cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA or shRNA. 8-oxodG was measured by immunostaining and modified comet assay. Thermal Proteome profiling, proteomics, cellular thermal shift assays, kinase and CEREP panel were used for target engagement, mode of action and selectivity investigations of MTH1 inhibitors. Effect of MTH1 inhibition on tumour growth was explored in BRAF V600E-mutated malignant melanoma patient derived xenograft and human colon cancer SW480 and HCT116 xenograft models. Results: Here, we demonstrate that recently described MTH1 inhibitors, which fail to kill cancer cells, also fail to introduce the toxic oxidized nucleotides into DNA. We also describe a new MTH1 inhibitor TH1579, (Karonudib), an analogue of TH588, which is a potent, selective MTH1 inhibitor with good oral availability and demonstrates excellent pharmacokinetic and anti-cancer properties in vivo. Conclusion: We demonstrate that in order to kill cancer cells MTH1 inhibitors must also introduce oxidized nucleotides into DNA. Furthermore, we describe TH1579 as a best-in-class MTH1 inhibitor, which we expect to be useful in order to further validate the MTH1 inhibitor concept.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Tampere, M, et al. (författare)
  • Novel Broad-Spectrum Antiviral Inhibitors Targeting Host Factors Essential for Replication of Pathogenic RNA Viruses
  • 2020
  • Ingår i: Viruses. - : MDPI AG. - 1999-4915. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent RNA virus outbreaks such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus (EBOV) have caused worldwide health emergencies highlighting the urgent need for new antiviral strategies. Targeting host cell pathways supporting viral replication is an attractive approach for development of antiviral compounds, especially with new, unexplored viruses where knowledge of virus biology is limited. Here, we present a strategy to identify host-targeted small molecule inhibitors using an image-based phenotypic antiviral screening assay followed by extensive target identification efforts revealing altered cellular pathways upon antiviral compound treatment. The newly discovered antiviral compounds showed broad-range antiviral activity against pathogenic RNA viruses such as SARS-CoV-2, EBOV and Crimean-Congo hemorrhagic fever virus (CCHFV). Target identification of the antiviral compounds by thermal protein profiling revealed major effects on proteostasis pathways and disturbance in interactions between cellular HSP70 complex and viral proteins, illustrating the supportive role of HSP70 on many RNA viruses across virus families. Collectively, this strategy identifies new small molecule inhibitors with broad antiviral activity against pathogenic RNA viruses, but also uncovers novel virus biology urgently needed for design of new antiviral therapies.
  •  
9.
  • Bonagas, Nadilly, et al. (författare)
  • Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress
  • 2022
  • Ingår i: NATURE CANCER. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 156-
  • Tidskriftsartikel (refereegranskat)abstract
    • The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors. Helleday and colleagues describe a nanomolar MTHFD2 inhibitor that causes replication stress and DNA damage accumulation in cancer cells via thymidine depletion, demonstrating a potential therapeutic strategy in AML tumors in vivo.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy