SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalliokoski Kari K) "

Sökning: WFRF:(Kalliokoski Kari K)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sjöros, Tanja, et al. (författare)
  • Reducing Sedentary Time and Whole-Body Insulin Sensitivity in Metabolic Syndrome : A 6-Month Randomized Controlled Trial
  • 2023
  • Ingår i: Medicine & Science in Sports & Exercise. - Philadelphia, PA : Lippincott Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 55:3, s. 342-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This study aimed to investigate whether a reduction in daily sedentary behavior (SB) improves insulin sensitivity in adults with metabolic syndrome in 6 months, without adding intentional exercise training.Methods: Sixty-four sedentary inactive middle-age adults with overweight and metabolic syndrome (mean (SD) age, 58 (7) yr; mean (SD) body mass index, 31.6 (4.3) kg.m(-2); 27 men) were randomized into intervention and control groups. The 6-month individualized behavioral intervention supported by an interactive accelerometer and a mobile application aimed at reducing daily SB by 1 h compared with baseline. Insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by air displacement plethysmography, and fasting blood samples were analyzed before and after the intervention. SB and physical activity were measured with hip-worn accelerometers throughout the intervention.Results: SB decreased by 40 (95% confidence interval, 17-65) min.d(-1), and moderate-to-vigorous physical activity increased by 20 (95% confidence interval, 11-28) min.d(-1) on average in the intervention group with no significant changes in these outcomes in the control group. After 6 months, fasting plasma insulin decreased (similar to 1 mU.L-1) in the intervention group compared with the control group (time-group, P = 0.0081), but insulin sensitivity did not change in either group. The changes in body mass or adiposity did not differ between groups. Among all participants, the changes in SB and body mass correlated inversely with the change in insulin sensitivity (r = -0.31, -0.44; P = 0.025, 0.0005, respectively).Conclusions: An intervention aimed at reducing daily SB resulted in slightly decreased fasting insulin, but had no effects on insulin sensitivity or body adiposity. However, as the change in insulin sensitivity associated with the changes in SB and body mass, multifaceted interventions targeting to weight loss are likely to be beneficial in improving whole-body insulin sensitivity. © Lippincott Williams & Wilkins.
  •  
2.
  • Kudomi, Nobuyuki, et al. (författare)
  • Myocardial Blood Flow and Metabolic Rate of Oxygen Measurement in the Right and Left Ventricles at Rest and During Exercise Using 15O-Labeled Compounds and PET
  • 2019
  • Ingår i: Frontiers in Physiology. - Lausanne : Frontiers Media S.A.. - 1664-042X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Simultaneous measurement of right (RV) and left ventricle (LV) myocardial blood flow (MBF), oxygen extraction fraction (OEF), and oxygen consumption (MVO2) non-invasively in humans would provide new possibilities to understand cardiac physiology and different patho-physiological states. Methods: We developed and tested an optimized novel method to measure MBF, OEF, and MVO2 simultaneously both in the RV and LV free wall (FW) using positron emission tomography in healthy young men at rest and during supine bicycle exercise. Results: Resting MBF was not significantly different between the three myocardial regions. Exercise increased MBF in the LVFW and septum, but MBF was lower in the RV compared to septum and LVFW during exercise. Resting OEF was similar between the three different myocardial regions (similar to 70%) and increased in response to exercise similarly in all regions. MVO2 increased approximately two to three times from rest to exercise in all myocardial regions, but was significantly lower in the RV during exercise as compared to septum LVFW. Conclusion: MBF, OEF, and MVO2 can be assessed simultaneously in the RV and LV myocardia at rest and during exercise. Although there are no major differences in the MBF and OEF between LV and RV myocardial regions in the resting myocardium, MVO2 per gram of myocardium appears to be lower the RV in the exercising healthy human heart due to lower mean blood flow. The presented method may provide valuable insights for the assessment of MBF, OEF and MVO2 in hearts in different pathophysiological states.
  •  
3.
  •  
4.
  • Laaksonen, Marko S, 1975-, et al. (författare)
  • VO2peak, myocardial hypertrophy, and myocardial blood flow in endurance-trained men
  • 2014
  • Ingår i: Medicine and science in sports and exercise. - 1530-0315. ; 46:8, s. 1498-1505
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. METHODS: We studied the interrelationships between peak aerobic power (V̇O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. RESULTS: Both V̇O2peak (P < 0.001) and left ventricular (LV) mass index (P < 0.001) were higher in the ET group. Basal MBF was similar between the groups. MBF during adenosine was significantly lower in the ET group (2.88 ± 1.01 vs 3.64 ± 1.11 mLg-1min-1, P < 0.05) but not when the difference in LV mass was taken into account. V̇O2peak correlated negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. CONCLUSIONS: The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.
  •  
5.
  • Laine, Saara, et al. (författare)
  • Effects of Different Exercise Training Protocols on Gene Expression of Rac1 and PAK1 in Healthy Rat Fast- and Slow-Type Muscles.
  • 2020
  • Ingår i: Frontiers in Physiology. - : Frontiers Media S.A.. - 1664-042X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Rac1 and its downstream target PAK1 are novel regulators of insulin and exercise-induced glucose uptake in skeletal muscle. However, it is not yet understood how different training intensities affect the expression of these proteins. Therefore, we studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on Rac1 and PAK1 expression in fast-type (gastrocnemius, GC) and slow-type (soleus, SOL) muscles in rats after HIIT and MICT swimming exercises.Methods: The mRNA expression was determined using qPCR and protein expression levels with reverse-phase protein microarray (RPPA).Results: HIIT significantly decreased Rac1 mRNA expression in GC compared to MICT (p = 0.003) and to the control group (CON) (p = 0.001). At the protein level Rac1 was increased in GC in both training groups, but only the difference between HIIT and CON was significant (p = 0.02). HIIT caused significant decrease of PAK1 mRNA expression in GC compared to MICT (p = 0.007) and to CON (p = 0.001). At the protein level, HIIT increased PAK1 expression in GC compared to MICT and CON (by ∼17%), but the difference was not statistically significant (p = 0.3, p = 0.2, respectively). There were no significant differences in the Rac1 or PAK1 expression in SOL between the groups.Conclusion: Our results indicate that HIIT, but not MICT, decreases Rac1 and PAK1 mRNA expression and increases the protein expression of especially Rac1 but only in fast-type muscle. These exercise training findings may reveal new therapeutic targets to treat patients with metabolic diseases.
  •  
6.
  • Mawhinney, Chris, et al. (författare)
  • Cool-Water Immersion Reduces Postexercise Quadriceps Femoris Muscle Perfusion More Than Cold-Water Immersion
  • 2022
  • Ingår i: Medicine & Science in Sports & Exercise. - Philadelphia, PA : Lippincott Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 54:7, s. 1085-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The muscle perfusion response to postexercise cold-water immersion (CWI) is not well understood. We examined the effects of graded postexercise CWI upon global and regional quadriceps femoris muscle perfusion using positron emission tomography and [15O]H2O. Methods: Using a matched-group design, 30 healthy men performed cycle ergometer exercise at 70% VO2peak to a core body temperature of 38°C, followed by either 10 min of CWI at 8°C, 22°C, or seated rest (control). Quadriceps muscle perfusion; thigh and calf cutaneous vascular conductance; intestinal, muscle, and local skin temperatures; thermal comfort; mean arterial pressure; and heart rate were assessed at preexercise, postexercise, and after CWI. Results: Global quadriceps perfusion was reduced beyond the predefined minimal clinically relevant threshold (0.75 mL per 100 g·min-1) in 22°C water versus control (difference (95% confidence interval (CI)), -2.5 (-3.9 to -1.1) mL per 100 g·min-1). Clinically relevant decreases in muscle perfusion were observed in the rectus femoris (-2.0 (-3.0 to -1.0) mL per 100 g·min-1) and vastus lateralis (-3.5 (-4.9 to -2.0) mL per 100 g·min-1) in 8°C water, and in the vastus lateralis (-3.3 (-4.8 to -1.9) mL per 100 g·min-1) in 22°C water versus control. The mean effects for vastus intermedius and vastus medialis perfusion were not clinically relevant. Clinically relevant decreases in thigh and calf cutaneous vascular conductance were observed in both cooling conditions. Conclusions: The present findings revealed that less noxious CWI (22°C) promoted clinically relevant postexercise decreases in global quadriceps muscle perfusion, whereas noxious cooling (8°C) elicited no effect. © Lippincott Williams & Wilkins
  •  
7.
  • Norha, Jooa, et al. (författare)
  • Effects of reducing sedentary behavior on cardiorespiratory fitness in adults with metabolic syndrome : A 6-month RCT
  • 2023
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - Chichester : Wiley-Blackwell Publishing Inc.. - 0905-7188 .- 1600-0838. ; 33:8, s. 1452-1461
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction:Poor cardiorespiratory fitness (CRF) is associated with adverse health outcomes. Previous observational and cross-sectional studies have suggested that reducing sedentary behavior (SB) might improve CRF. Therefore, we investigated the effects of a 6-month intervention of reducing SB on CRF in 64 sedentary inactive adults with metabolic syndrome in a non-blind randomized controlled trial.Materials and Methods:In the intervention group (INT, n = 33), the aim was to reduce SB by 1 h/day for 6 months without increasing exercise training. Control group (CON, n = 31) was instructed to maintain their habitual SB and physical activity. Maximal oxygen uptake (VO2max) was measured by maximal graded bicycle ergometer test with respiratory gas measurements. Physical activity and SB were measured during the whole intervention using accelerometers.Results:Reduction in SB did not improve VO2max statistically significantly (group × time p > 0.05). Maximal absolute power output (Wmax) did not improve significantly but increased in INT compared to CON when scaled to fat free mass (FFM) (at 6 months INT 1.54 [95% CI: 1.41, 1.67] vs. CON 1.45 [1.32, 1.59] Wmax/kgFFM, p = 0.036). Finally, the changes in daily step count correlated positively with the changes in VO2max scaled to body mass and FFM (r = 0.31 and 0.30, respectively, p < 0.05).Discussion:Reducing SB without adding exercise training does not seem to improve VO2max in adults with metabolic syndrome. However, succeeding in increasing daily step count may increase VO2max. © 2023 The Authors. Scandinavian Journal of Medicine & Science In Sports published by John Wiley & Sons Ltd.
  •  
8.
  • Sjöros, Tanja, et al. (författare)
  • Both sedentary time and physical activity are associated with cardiometabolic health in overweight adults in a 1 month accelerometer measurement
  • 2020
  • Ingår i: Scientific Reports. - London : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to examine the associations of cardiometabolic health markers with device-measured sedentary behavior (SB) duration and different intensities of physical activity (PA) among overweight working-aged adults with low self-reported PA levels. This cross-sectional analysis included 144 subjects (42 men) with mean age of 57 (SD 6.5) years and mean BMI of 31.7 (SD 4) kg/m2. SB and standing time, breaks in sedentary time, light PA (LPA) and moderate-to-vigorous PA (MVPA) were measured for 4 consecutive weeks (mean 25 days, SD 4) with hip-worn accelerometers. Fasting plasma glucose, insulin, HbA1c, triglycerides and total cholesterol, HDL and LDL were measured from venous blood samples. HOMA-IR index was calculated as a surrogate of insulin resistance. The associations were examined using linear models. LPA, MVPA, and daily steps associated with better insulin sensitivity and favorable plasma lipid profile, when adjusted for age, sex and BMI, whereas greater proportion of SB associated with insulin resistance and unfavorable lipid profile. As all PA intensities associated with better cardiometabolic health, the total daily duration of PA may be more relevant than intensity in maintaining metabolic health in overweight adults, if the current guidelines for PA are not met.Trial Registration: ClinicalTrials.gov NCT03101228, registered 05/04/2017, https://clinicaltrials.gov/show/NCT03101228 .
  •  
9.
  • Sjöros, Tanja, et al. (författare)
  • Influence of the Duration and Timing of Data Collection on Accelerometer-Measured Physical Activity, Sedentary Time and Associated Insulin Resistance
  • 2021
  • Ingår i: International Journal of Environmental Research and Public Health. - Basel : MDPI AG. - 1661-7827 .- 1660-4601. ; 18:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Accelerometry is a commonly used method to determine physical activity in clinical studies, but the duration and timing of measurement have seldom been addressed. We aimed to evaluate possible changes in the measured outcomes and associations with insulin resistance during four weeks of accelerometry data collection. This study included 143 participants (median age of 59 (IQR9) years; mean BMI of 30.7 (SD4) kg/m2; 41 men). Sedentary and standing time, breaks in sedentary time, and different intensities of physical activity were measured with hip-worn accelerometers. Differences in the accelerometer-based results between weeks 1, 2, 3 and 4 were analyzed by mixed models, differences during winter and summer by two-way ANOVA, and the associations between insulin resistance and cumulative means of accelerometer results during weeks 1 to 4 by linear models. Mean accelerometry duration was 24 (SD3) days. Sedentary time decreased after three weeks of measurement. More physical activity was measured during summer compared to winter. The associations between insulin resistance and sedentary behavior and light physical activity were non-significant after the first week of measurement, but the associations turned significant in two to three weeks. If the purpose of data collection is to reveal associations between accelerometer-measured outcomes and tenuous health outcomes, such as insulin sensitivity, data collection for at least three weeks may be needed © 2021 by the author. Licensee MDPI, Basel, Switzerland.
  •  
10.
  • Sjöros, Tanja, et al. (författare)
  • The effects of a 6-month intervention aimed to reduce sedentary time on skeletal muscle insulin sensitivity : a randomized controlled trial
  • 2023
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - Rockville, MD : American Physiological Society. - 0193-1849 .- 1522-1555. ; 325:2, s. E152-E162
  • Tidskriftsartikel (refereegranskat)abstract
    • Sedentary behavior (SB) and physical inactivity associate with impaired insulin sensitivity. We investigated whether an intervention aimed at a 1-h reduction in daily SB during 6 mo would improve insulin sensitivity in the weight-bearing thigh muscles. Forty-four sedentary inactive adults [mean age 58 (SD 7) yr; 43% men] with metabolic syndrome were randomized into intervention and control groups. The individualized behavioral intervention was supported by an interactive accelerometer and a mobile application. SB, measured with hip-worn accelerometers in 6-s intervals throughout the 6-mo intervention, decreased by 51 (95% CI 22-80) min/day and physical activity (PA) increased by 37 (95% CI 18-55) min/day in the intervention group with nonsignificant changes in these outcomes in the control group. Insulin sensitivity in the whole body and in the quadriceps femoris and hamstring muscles, measured with hyperinsulinemic-euglycemic clamp combined with [18F]fluoro-deoxy-glucose PET, did not significantly change during the intervention in either group. However, the changes in hamstring and whole body insulin sensitivity correlated inversely with the change in SB and positively with the changes in moderate-to-vigorous PA and daily steps. In conclusion, these results suggest that the more the participants were able to reduce their SB, the more their individual insulin sensitivity increased in the whole body and in the hamstring muscles but not in quadriceps femoris. However, according to our primary randomized controlled trial results, this kind of behavioral interventions targeted to reduce sedentariness may not be effective in increasing skeletal muscle and whole body insulin sensitivity in people with metabolic syndrome at the population level.NEW & NOTEWORTHY Aiming to reduce daily SB by 1 h/day had no impact on skeletal muscle insulin sensitivity in the weight-bearing thigh muscles. However, successfully reducing SB may increase insulin sensitivity in the postural hamstring muscles. This emphasizes the importance of both reducing SB and increasing moderate-to-vigorous physical activity to improve insulin sensitivity in functionally different muscles of the body and thus induce a more comprehensive change in insulin sensitivity in the whole body.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy