SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapfer Jutta) "

Sökning: WFRF:(Kapfer Jutta)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biurrun, Idoia, et al. (författare)
  • Benchmarking plant diversity of Palaearctic grasslands and other open habitats
  • 2021
  • Ingår i: Journal of Vegetation Science. - Oxford : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology. © 2021 The Authors.
  •  
2.
  • Dengler, Juergen, et al. (författare)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • Ingår i: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
3.
  • Idoia Biurrun, Idoia, et al. (författare)
  • GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands
  • 2019
  • Ingår i: Palaearctic Grasslands. - : Eurasian Dry Grassland Group (EDGG). - 2627-9827. ; :44, s. 26-47
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phytocoenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems.
  •  
4.
  • Kapfer, Jutta, et al. (författare)
  • Fine-scale changes in vegetation composition in a boreal mire over 50 years
  • 2011
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 99:5, s. 1179-1189
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. In the face of a rapidly changing environment, long-term studies provide important insights into patterns of vegetation and processes of change, but long-term studies are rare for many ecosystems. 2. We studied recent vegetation changes at a fine scale in a Sphagnum-dominated bog in south Sweden by resurveying part of the bog 54 years after the original phytosociological survey. We used an indirect approach to identify changes in vegetation composition in relation to environment because of a lack of permanent sampling units. By applying a weighted averaging technique, we calculated relative changes in species optimum values for different environmental gradients as represented by indicator values for light, temperature, pH, moisture and nutrients. 3. Species composition of the mire vegetation has changed significantly over the past five decades, as indicated by significant changes in species frequencies and species optima for the gradients examined. Species with lower indicator values for moisture and light and higher indicator values for nutrients have become more frequent on the mire. In particular, species of trees and dwarf shrubs increased in frequency, whereas typical mire species decreased (e. g. Trichophorum cespitosum (L.) Hartm.) or disappeared from the study site (e. g. Scheuchzeria palustris L.). 4. Synthesis. Composition of the mire vegetation is found to be dynamic at different temporal and spatial scales. Increased air temperature and nutrient availability in south Sweden over the past few decades may have augmented productivity (e. g. tree growth), resulting in drier and shadier conditions for several species. This study successfully demonstrated the applicability of an indirect approach for detecting long-term vegetation change at a fine scale. This approach is an effective way of using historic and modern phytosociological data sets to detect vegetation and environmental change through time.
  •  
5.
  • Wasof, Safaa, et al. (författare)
  • Disjunct populations of European vascular plant species keep the same climatic niches
  • 2015
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 24:12, s. 1401-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distribution modelling to test for a region effect on each species' climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with strictly disjunct populations and 58 species (16%) of the 358 species with distant populations showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic-alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000-15,000 years. Therefore, the basic assumption of species distribution models that a species' climatic niche is constant in space and time-at least on time scales 104 years or less-seems to be largely valid for arctic-alpine plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Diekmann, Martin (3)
Pielech, Remigiusz (3)
Boch, Steffen (3)
Bruun, Hans Henrik (3)
Hajek, Michal (3)
Bergamini, Ariel (3)
visa fler...
Dembicz, Iwona (3)
Kozub, Łukasz (3)
Marcenò, Corrado (3)
Guarino, Riccardo (3)
Filibeck, Goffredo (3)
Jiménez-Alfaro, Borj ... (3)
Kuzemko, Anna (3)
Roleček, Jan (3)
Belonovskaya, Elena (3)
De Frenne, Pieter (2)
Prentice, Honor C (2)
Mayrhofer, Helmut (2)
Alatalo, Juha M. (2)
Lindborg, Regina (2)
Pakeman, Robin J. (2)
Jeanneret, Philippe (2)
Jentsch, Anke (2)
Wang, Yun (2)
Waldén, Emelie (2)
Becker, Thomas (2)
Deng, Lei (2)
Natcheva, Rayna (2)
Birks, H. John B. (2)
Biurrun, Idoia (2)
Gillet, François (2)
Reitalu, Triin (2)
Van Meerbeek, Koenra ... (2)
Axmanová, Irena (2)
Burrascano, Sabina (2)
Bartha, Sándor (2)
Conradi, Timo (2)
Essl, Franz (2)
Molnár, Zsolt (2)
Sutcliffe, Laura M. ... (2)
Terzi, Massimo (2)
Winkler, Manuela (2)
Aćić, Svetlana (2)
Afif, Elias (2)
Akasaka, Munemitsu (2)
Aleffi, Michele (2)
Apostolova, Iva (2)
Bátori, Zoltán (2)
Baumann, Esther (2)
Benito Alonso, José ... (2)
visa färre...
Lärosäte
Uppsala universitet (2)
Stockholms universitet (2)
Högskolan i Gävle (2)
Lunds universitet (2)
Umeå universitet (1)
Högskolan i Halmstad (1)
visa fler...
Jönköping University (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy