SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kepka Cezary) "

Sökning: WFRF:(Kepka Cezary)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baumann, Stefan, et al. (författare)
  • Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry
  • 2019
  • Ingår i: European Journal of Radiology. - : ELSEVIER IRELAND LTD. - 0720-048X .- 1872-7727. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFR mL ) for the detection of lesion-specific ischemia. Method: Five centers enrolled 351 patients (73.5% male) with 525 vessels in the MACHINE (Machine leArning Based CT angiograpHy derIved FFR: a Multi-ceNtEr) registry. CT-FFRML and invasive FFR amp;lt;= 0.80 were considered hemodynamically significant, whereas cCTA luminal stenosis amp;gt;= 50% was considered obstructive. The diagnostic performance to assess lesion-specific ischemia in both men and women was assessed on a per-vessel basis. Results: In total, 398 vessels in men and 127 vessels in women were included. Compared to invasive FFR, CT-FFRML reached a sensitivity, specificity, positive predictive value, and negative predictive value of 78% (95%CI 72-84), 79% (95%CI 73-84), 75% (95%CI 69-79), and 82% (95%CI: 76-86) in men vs. 75% (95%CI 58-88), 81 (95%CI 72-89), 61% (95%CI 50-72) and 89% (95%CI 82-94) in women, respectively. CT-FFRML showed no statistically significant difference in the area under the receiver-operating characteristic curve (AUC) in men vs. women (AUC: 0.83 [95%CI 0.79-0.87] vs. 0.83 [95%CI 0.75-0.89], p = 0.89). CT-FFRML was not superior to cCTA alone [AUC: 0.83 (95%CI: 0.75-0.89) vs. 0.74 (95%CI: 0.65-0.81), p = 0.12] in women, but showed a statistically significant improvement in men [0.83 (95%CI: 0.79-0.87) vs. 0.76 (95%CI: 0.71-0.80), p = 0.007]. Conclusions: Machine-learning based CT-FFR performs equally in men and women with superior diagnostic performance over cCTA alone for the detection of lesion-specific ischemia.
  •  
2.
  • Coenen, Adriaan, et al. (författare)
  • Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium
  • 2018
  • Ingår i: Circulation Cardiovascular Imaging. - : LIPPINCOTT WILLIAMS & WILKINS. - 1941-9651 .- 1942-0080. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Coronary computed tomographic angiography (CTA) is a reliable modality to detect coronary artery disease. However, CTA generally overestimates stenosis severity compared with invasive angiography, and angiographic stenosis does not necessarily imply hemodynamic relevance when fractional flow reserve (FFR) is used as reference. CTA-based FFR (CT-FFR), using computational fluid dynamics (CFD), improves the correlation with invasive FFR results but is computationally demanding. More recently, a new machine-learning (ML) CT-FFR algorithm has been developed based on a deep learning model, which can be performed on a regular workstation. In this large multicenter cohort, the diagnostic performance ML-based CT-FFR was compared with CTA and CFD-based CT-FFR for detection of functionally obstructive coronary artery disease. Methods and Results: At 5 centers in Europe, Asia, and the United States, 351 patients, including 525 vessels with invasive FFR comparison, were included. ML-based and CFD-based CT-FFR were performed on the CTA data, and diagnostic performance was evaluated using invasive FFR as reference. Correlation between ML-based and CFD-based CT-FFR was excellent (R=0.997). ML-based (area under curve, 0.84) and CFD-based CT-FFR (0.84) outperformed visual CTA (0.69; Pamp;lt;0.0001). On a per-vessel basis, diagnostic accuracy improved from 58% (95% confidence interval, 54%-63%) by CTA to 78% (75%-82%) by ML-based CT-FFR. The per-patient accuracy improved from 71% (66%-76%) by CTA to 85% (81%-89%) by adding ML-based CT-FFR as 62 of 85 (73%) false-positive CTA results could be correctly reclassified by adding ML-based CT-FFR. Conclusions: On-site CT-FFR based on ML improves the performance of CTA by correctly reclassifying hemodynamically nonsignificant stenosis and performs equally well as CFD-based CT-FFR.
  •  
3.
  • de Geer, Jakob, et al. (författare)
  • Effect of Tube Voltage on Diagnostic Performance of Fractional Flow Reserve Derived From Coronary CT Angiography With Machine Learning: Results From the MACHINE Registry
  • 2019
  • Ingår i: American Journal of Roentgenology. - : AMER ROENTGEN RAY SOC. - 0361-803X .- 1546-3141. ; 213:2, s. 325-331
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE. Coronary CT angiography (CCTA)-based methods allow noninvasive estimation of fractional flow reserve (cFFR), recently through use of a machine learning (ML) algorithm (cFFR(ML)). However, attenuation values vary according to the tube voltage used, and it has not been shown whether this significantly affects the diagnostic performance of cFFR and cFFR(ML). Therefore, the purpose of this study is to retrospectively evaluate the effect of tube voltage on the diagnostic performance of cFFR(ML). MATERIALS AND METHODS. A total of 525 coronary vessels in 351 patients identified in the MACHINE consortium registry were evaluated in terms of invasively measured FFR and cFFR(ML). CCTA examinations were performed with a tube voltage of 80, 100, or 120 kVp. For each tube voltage value, correlation (assessed by Spearman rank correlation coefficient), agreement (evaluated by intraclass correlation coefficient and Bland-Altman plot analysis), and diagnostic performance (based on ROC AUC value, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy) of the cFFR(ML) in terms of detection of significant stenosis were calculated. RESULTS. For tube voltages of 80, 100, and 120 kVp, the Spearman correlation coefficient for cFFR(ML) in relation to the invasively measured FFR value was rho = 0.684, rho = 0.622, and rho = 0.669, respectively (p amp;lt; 0.001 for all). The corresponding intraclass correlation coefficient was 0.78, 0.76, and 0.77, respectively (p amp;lt; 0.001 for all). Sensitivity was 100.0%, 73.5%, and 85.0%, and specificity was 76.2%, 79.0%, and 72.8% for tube voltages of 80, 100, and 120 kVp, respectively. The ROC AUC value was 0.90, 0.82, and 0.80 for 80, 100, and 120 kVp, respectively (p amp;lt; 0.001 for all). CONCLUSION. CCTA-derived cFFR(ML) is a robust method, and its performance does not vary significantly between examinations performed using tube voltages of 100 kVp and 120 kVp. However, because of rapid advancements in CT and postprocessing technology, further research is needed.
  •  
4.
  • Nous, Fay M. A., et al. (författare)
  • Comparison of the Diagnostic Performance of Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve in Patients With Versus Without Diabetes Mellitus (from the MACHINE Consortium)
  • 2019
  • Ingår i: American Journal of Cardiology. - : EXCERPTA MEDICA INC-ELSEVIER SCIENCE INC. - 0002-9149 .- 1879-1913. ; 123:4, s. 537-543
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) is a noninvasive application to evaluate the hemodynamic impact of coronary artery disease by simulating invasively measured FFR based on CT data. CT-FFR is based on the assumption of a normal coronary microvascular response. We assessed the diagnostic performance of a machine-learning based application for on-site computation of CT-FFR in patients with and without diabetes mellitus with suspected coronary artery disease. The study population included 75 diabetic and 276 nondiabetic patients who were enrolled in the MACHINE consortium. The overall diagnostic performance of coronary CT angiography alone and in combination with CT-FFR were analyzed with direct invasive FFR comparison in 110 coronary vessels of the diabetic group and in 415 coronary vessels of the nondiabetic group. Per-vessel discrimination of lesion-specific ischemia by CT-FFR was assessed by the area under the receiver operating characteristic curves. The overall diagnostic accuracy of CT-FFR in diabetic patients was 83% and in nondiabetic patients 75% (p = 0.088), showing improvement over the diagnostic accuracy of coronary CT angiography, which was 58% and 65% (p = 0.223), respectively. In addition, the diagnostic accuracy of CT-FFR was similar between diabetic and nondiabetic patients per stratified CT-FFR group (CT-FFR amp;lt; 0.6, 0.6 to 0.69, 0.7 to 0.79, 0.8 to 0.89, amp;gt;= 0.9). The area under the curves for diabetic and nondiabetic patients were also comparable, 0.88 and 0.82 (p = 0.113), respectively. In conclusion, on-site machine-learning CT-FFR analysis improved the diagnostic performance of coronary CT angiography and accurately discriminated lesion-specific ischemia in both diabetic and nondiabetic patients suspected of coronary artery disease. (C) 2018 Elsevier Inc. All rights reserved.
  •  
5.
  • Renker, Matthias, et al. (författare)
  • Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography
  • 2021
  • Ingår i: JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY. - : ELSEVIER SCIENCE INC. - 1934-5925. ; 15:6, s. 492-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Compared with invasive fractional flow reserve (FFR), coronary CT angiography (cCTA) is limited in detecting hemodynamically relevant lesions. cCTA-based FFR (CT-FFR) is an approach to overcome this insufficiency by use of computational fluid dynamics. Applying recent innovations in computer science, a machine learning (ML) method for CT-FFR derivation was introduced and showed improved diagnostic performance compared to cCTA alone. We sought to investigate the influence of stenosis location in the coronary artery system on the performance of ML-CT-FFR in a large, multicenter cohort. Methods: Three hundred and thirty patients (75.2% male, median age 63 years) with 502 coronary artery stenoses were included in this substudy of the MACHINE (Machine Learning Based CT Angiography Derived FFR: A MultiCenter Registry) registry. Correlation of ML-CT-FFR with the invasive reference standard FFR was assessed and pooled diagnostic performance of ML-CT-FFR and cCTA was determined separately for the following stenosis locations: RCA, LAD, LCX, proximal, middle, and distal vessel segments. Results: ML-CT-FFR correlated well with invasive FFR across the different stenosis locations. Per-lesion analysis revealed improved diagnostic accuracy of ML-CT-FFR compared with conventional cCTA for stenoses in the RCA (71.8% [95% confidence interval, 63.0%-79.5%] vs. 54.8% [45.7%-63.8%]), LAD (79.3 [73.9-84.0] vs. 59.6 [53.5-65.6]), LCX (84.1 [76.0-90.3] vs. 63.7 [54.1-72.6]), proximal (81.5 [74.6-87.1] vs. 63.8 [55.9-71.2]), middle (81.2 [75.7-85.9] vs. 59.4 [53.0-65.6]) and distal stenosis location (67.4 [57.0-76.6] vs. 51.6 [41.1-62.0]). Conclusion: In a multicenter cohort with high disease prevalence, ML-CT-FFR offered improved diagnostic performance over cCTA for detecting hemodynamically relevant stenoses regardless of their location.
  •  
6.
  • Tesche, Christian, et al. (författare)
  • Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR Results From MACHINE Registry
  • 2020
  • Ingår i: JACC Cardiovascular Imaging. - : ELSEVIER SCIENCE INC. - 1936-878X .- 1876-7591. ; 13:3, s. 760-770
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVESThis study was conducted to investigate the influence of coronary artery calcium (CAC) score on the diagnostic performance of machine-learning-based coronary computed tomography (CT) angiography (cCTA)-derived fractional flow reserve (CT-FFR).BACKGROUNDCT-FFR is used reliably to detect lesion-specific ischemia. Novel CT-FFR algorithms using machine-learning artificial intelligence techniques perform fast and require less complex computational fluid dynamics. Yet, influence of CAC score on diagnostic performance of the machine-learning approach has not been investigated.METHODSA total of 482 vessels from 314 patients (age 62.3 +/- 9.3 years, 77% male) who underwent cCTA followed by invasive FFR were investigated from the MACHINE (Machine Learning based CT Angiography derived FFR: a Multi-center Registry) registry data. CAC scores were quantified using the Agatston convention. The diagnostic performance of CT-FFR to detect lesion-specific ischemia was assessed across all Agatston score categories (CAC 0, >0 to <100, 100 to <400, and >=$400) on a per-vessel level with invasive FFR as the reference standard.RESULTSThe diagnostic accuracy of CT-FFR versus invasive FFR was superior to cCTA alone on a per-vessel level (78% vs. 60%) and per patient level (83% vs. 73%) across all Agatston score categories. No statistically significant differences in the diagnostic accuracy, sensitivity, or specificity of CT-FFR were observed across the categories. CT-FFR showed good discriminatory power in vessels with high Agatston scores (CAC >= 400) and high performance in low-to-intermediate Agatston scores (CAC >0 to <400) with a statistically significant difference in the area under the receiver-operating characteristic curve (AUC) (AUC: 0.71 [95% confidence interval (CI): 0.57 to 0.85] vs. 0.85 [95% CI: 0.82 to 0.89], p = 0.04). CT-FFR showed superior diagnostic value over cCTA in vessels with high Agatston scores (CAC >= 400: AUC 0.71 vs. 0.55, p = 0.04) and low-to-intermediate Agatston scores (CAC >0 to <400: AUC 0.86 vs. 0.63, p < 0.001).CONCLUSIONSMachine-learning-based CT-FFR showed superior diagnostic performance over cCTA alone in CAC with a significant difference in the performance of CT-FFR as calcium burden/Agatston calcium score increased. (Machine Learning Based CT Angiography Derived FFR: a Multicenter, Registry [MACHINE] NCT02805621). (C) 2020 by the American College of Cardiology Foundation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy