SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khalaf Hazem 1981 ) "

Sökning: WFRF:(Khalaf Hazem 1981 )

  • Resultat 1-10 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Nanocellulose composite wound dressings for real-time pH wound monitoring
  • 2023
  • Ingår i: Materials Today Bio. - : Elsevier. - 2590-0064. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.
  •  
2.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 30:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.
  •  
3.
  •  
4.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Dual action of bacteriocin PLNC8 alpha beta through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation
  • 2017
  • Ingår i: Pathogens and Disease. - : Oxford University Press. - 2049-632X. ; 75:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 alpha beta. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 alpha beta enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 alpha beta efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 alpha beta displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 alpha beta in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.
  •  
5.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts
  • 2015
  • Ingår i: Microbiological Research. - : Elsevier BV. - 0944-5013 .- 1618-0623. ; 178, s. 18-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontal pathogens, including Polphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-beta 1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis.
  •  
6.
  • Karlsson, Mattias, 1981-, et al. (författare)
  • Substances released from probiotic Lactobacillus rhamnosus GR-1 potentiate NF-κB activity in Escherichia coli-stimulated urinary bladder cells
  • 2012
  • Ingår i: FEMS Immunology and Medical Microbiology. - Hoboken, USA : Wiley-Blackwell. - 0928-8244 .- 1574-695X. ; 66:2, s. 147-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli.
  •  
7.
  • Omer, Abubakr A. M., 1982-, et al. (författare)
  • Plantaricin NC8 αβ rapidly and efficiently inhibits flaviviruses and SARS-CoV-2 by disrupting their envelopes
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 17:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Potent broad-spectrum antiviral agents are urgently needed to combat existing and emerging viral infections. This is particularly important considering that vaccine development is a costly and time consuming process and that viruses constantly mutate and render the vaccine ineffective. Antimicrobial peptides (AMP), such as bacteriocins, are attractive candidates as antiviral agents against enveloped viruses. One of these bacteriocins is PLNC8 αβ, which consists of amphipathic peptides with positive net charges that display high affinity for negatively charged pathogen membrane structures, including phosphatidylserine rich lipid membranes of viral envelopes. Due to the morphological and physiological differences between viral envelopes and host cell plasma membranes, PLNC8 αβ is thought to have high safety profile by specifically targeting viral envelopes without effecting host cell membranes. In this study, we have tested the antiviral effects of PLNC8 αβ against the flaviviruses Langat and Kunjin, coronavirus SARS-CoV-2, influenza A virus (IAV), and human immunodeficiency virus-1 (HIV-1). The concentration of PLNC8 αβ that is required to eliminate all the infective virus particles is in the range of nanomolar (nM) to micromolar (μM), which is surprisingly efficient considering the high content of cholesterol (8–35%) in their lipid envelopes. We found that viruses replicating in the endoplasmic reticulum (ER)/Golgi complex, e.g. SARS-CoV-2 and flaviviruses, are considerably more susceptible to PLNC8 αβ, compared to viruses that acquire their lipid envelope from the plasma membrane, such as IAV and HIV-1. Development of novel broad-spectrum antiviral agents can significantly benefit human health by rapidly and efficiently eliminating infectious virions and thereby limit virus dissemination and spreading between individuals. PLNC8 αβ can potentially be developed into an effective and safe antiviral agent that targets the lipid compartments of viral envelopes of extracellular virions, more or less independent of virus antigenic mutations, which faces many antiviral drugs and vaccines.
  •  
8.
  • Wiman, Emanuel, 1985-, et al. (författare)
  • Development of novel broad-spectrum antimicrobial lipopeptides derived from plantaricin NC8 β
  • 2023
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial resistance towards antibiotics is a major global health issue. Very few novel antimicrobial agents and therapies have been made available for clinical use during the past decades, despite an increasing need. Antimicrobial peptides have been intensely studied, many of which have shown great promise in vitro. We have previously demonstrated that the bacteriocin Plantaricin NC8 αβ (PLNC8 αβ) from Lactobacillus plantarum effectively inhibits Staphylococcus spp., and shows little to no cytotoxicity towards human keratinocytes. However, due to its limitations in inhibiting gram-negative species, the aim of the present study was to identify novel antimicrobial peptidomimetic compounds with an enhanced spectrum of activity, derived from the β peptide of PLNC8 αβ. We have rationally designed and synthesized a small library of lipopeptides with significantly improved antimicrobial activity towards both gram-positive and gram-negative bacteria, including the ESKAPE pathogens. The lipopeptides consist of 16 amino acids with a terminal fatty acid chain and assemble into micelles that effectively inhibit and kill bacteria by permeabilizing their cell membranes. They demonstrate low hemolytic activity and liposome model systems further confirm selectivity for bacterial lipid membranes. The combination of lipopeptides with different antibiotics enhanced the effects in a synergistic or additive manner. Our data suggest that the novel lipopeptides are promising as future antimicrobial agents, however additional experiments using relevant animal models are necessary to further validate their in vivo efficacy.
  •  
9.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1-22, β7-34 and β1-20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
  •  
10.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria-induced proinflammatory responses in dermal fibroblasts
  • 2018
  • Ingår i: MicrobiologyOpen. - : John Wiley & Sons. - 2045-8827. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial resistance needs to be tackled from new angles, and antimicrobial peptides could be future candidates for combating bacterial infections. This study aims to investigate in vitro the bactericidal effects of the lantibiotic gallidermin on Staphylococcus epidermidis and Staphylococcus aureus, possible cytotoxic effects and its impact on host-microbe interactions. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of gallidermin were determined, and cytotoxicity and proinflammatory effects of gallidermin on fibroblasts, red blood cells (RBCs) and in whole blood were investigated. Both MIC and MBC for all four tested strains of S. epidermidis was 6.25 μg/ml. Both MIC and MBC for methicillin-sensitive S. aureus was 12.5 μg/ml and for methicillin-resistant S. aureus (MRSA) 1.56 μg/ml. Gallidermin displayed no cytotoxic effects on fibroblasts, only a high dose of gallidermin induced low levels of CXCL8 and interleukin-6. Gallidermin hemolyzed less than 1% of human RBCs, and did not induce reactive oxygen species production or cell aggregation in whole blood. In cell culture, gallidermin inhibited the cytotoxic effects of the bacteria and totally suppressed the bacteria-induced release of CXCL8 and interleukin-6 from fibroblasts. We demonstrate that gallidermin, expressing low cell cytotoxicity, is a promising candidate for treating bacterial infections caused by S. epidermidis and S. aureus, especially MRSA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49
Typ av publikation
tidskriftsartikel (35)
annan publikation (11)
bokkapitel (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Bengtsson, Torbjörn, ... (42)
Demirel, Isak, 1987- (10)
Aili, Daniel (8)
Selegård, Robert, 19 ... (6)
Musa, Amani, 1983- (6)
Aili, Daniel, 1977- (5)
visa fler...
Olsson, Per-Erik, 19 ... (5)
Sirsjö, Allan, 1959- (5)
Skog, Mårten (4)
Hultenby, Kjell (4)
Nayeri, Fariba (3)
Selegård, Robert (3)
Scherbak, Nikolai, 1 ... (3)
Berglund, Linn (2)
Söderquist, Bo, 1955 ... (2)
Hellmark, Bengt, 197 ... (2)
Björk, Emma, 1981- (2)
Aronsson, Christophe ... (2)
Pradhan, Ajay, 1983- (2)
Zattarin, Elisa, Dok ... (2)
Khalaf, Atika (1)
Vagin, Mikhail (1)
Oksman, Kristiina, 1 ... (1)
Altimiras, Jordi (1)
Davies, Julia R, 196 ... (1)
Sepulveda, Borja (1)
Oksman, Kristiina (1)
Wickham, Abeni (1)
Greczynski, Grzegorz (1)
Melik, Wessam, 1973- (1)
Odén, Magnus, 1965- (1)
Lönn, Johanna (1)
Lönn, Johanna, 1982- (1)
Neilands, Jessica (1)
Svensäter, Gunnel, 1 ... (1)
Zhang, Boxi (1)
Ivarsson, Per (1)
Kruse, Robert, 1972- (1)
Karlsson, Jesper (1)
Lindström, S. B. (1)
Junker, Johan, 1980- (1)
Dånmark, Staffan (1)
Tran, Pham Tue Hung, ... (1)
Hinkula, Jorma, 1958 ... (1)
Karlsson, Marie, 197 ... (1)
Sotra, Zeljana (1)
Rinklake, Ivana (1)
Rakar, Jonathan, 198 ... (1)
Basic, Vladimir T., ... (1)
Ericson, Marica B, 1 ... (1)
visa färre...
Lärosäte
Örebro universitet (49)
Linköpings universitet (13)
Karolinska Institutet (3)
Luleå tekniska universitet (2)
Malmö universitet (2)
Göteborgs universitet (1)
visa fler...
Högskolan Kristianstad (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (49)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (38)
Naturvetenskap (14)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy