SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kjöller Rasmus) "

Search: WFRF:(Kjöller Rasmus)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bahram, Mohammad, et al. (author)
  • The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales
  • 2013
  • In: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 101:5, s. 1335-1344
  • Journal article (peer-reviewed)abstract
    • Despite recent advances in understanding community ecology of ectomycorrhizal fungi, little is known about their spatial patterning and the underlying mechanisms driving these patterns across different ecosystems. * This meta-study aimed to elucidate the scale, rate and causes of spatial structure of ectomycorrhizal fungal communities in different ecosystems by analysing 16 and 55 sites at the local and global scales, respectively. We examined the distance decay of similarity relationship in species- and phylogenetic lineage-based communities in relation to sampling and environmental variables. * Tropical ectomycorrhizal fungal communities exhibited stronger distance-decay patterns compared to non-tropical communities. Distance from the equator and sampling area were the main determinants of the extent of distance decay in fungal communities. The rate of distance decay was negatively related to host density at the local scale. At the global scale, lineage-level community similarity decayed faster with latitude than with longitude. * Synthesis. Spatial processes play a stronger role and over a greater scale in structuring local communities of ectomycorrhizal fungi than previously anticipated, particularly in ecosystems with greater vegetation age and closer to the equator. Greater rate of distance decay occurs in ecosystems with lower host density that may stem from increasing dispersal and establishment limitation. The relatively strong latitude effect on distance decay of lineage-level community similarity suggests that climate affects large-scale spatial processes and may cause phylogenetic clustering of ectomycorrhizal fungi at the global scale.
  •  
3.
  •  
4.
  • Cruz-Paredes, Carla, et al. (author)
  • Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash
  • 2017
  • In: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717. ; 112, s. 153-164
  • Journal article (peer-reviewed)abstract
    • The identification of causal links between microbial community structure and ecosystem functions are required for a mechanistic understanding of ecosystem responses to environmental change. One of the most influential factors affecting plants and microbial communities in soil in managed ecosystems is the current land-use. In forestry, wood ash has been proposed as a liming agent and a fertilizer, but has been questioned due to the risk associated with its Cd content. The aim of this study was to determine the effects of wood ash on the structure and function of decomposer microbial communities in forest soils and to assign them to causal mechanisms. To do this, we assessed the responses to wood ash application of (i) the microbial community size and structure, (ii) microbial community trait-distributions, including bacterial pH relationships and Cd-tolerance, to assign the microbial responses to pH and Cd, and (iii) consequences for proxies of the function soil organic matter (SOM) turnover including respiration and microbial growth rates. Two sets of field-experiments in temperate conifer forest plantations were combined with laboratory microcosm experiments where wood ash additions were compared to additions of lime and Cd. Wood ash induced structural changes in the microbial community in both field experiments, and striking similarities were observed between the application of ash and that of lime in the microcosm experiments. Wood ash increased pH, and led to a shift toward faster SOM decomposition and a reduced importance of fungi. This coincided with shifts in bacterial community trait distributions for pH, with pH optima closely tracking the new soil pH. A Cd solution could induce Cd-tolerance in the microcosm experiments, but the ash did not affect the microbial tolerance to Cd in field or microcosm experiments. We demonstrate that the microbial community responded strongly to the application of wood ash to forest soils with consequences for its functional capabilities in terms of respiration and growth rates. The bacterial community's trait distributions revealed that the increased pH directly caused the microbial responses, while the wood ash associated Cd has no detectable effects on the microbial community. The study demonstrates the power of community trait distributions to (i) causally link microbial structural responses to environmental change and (ii) potential to predict the ecosystem functional consequences.
  •  
5.
  • Cruz-Paredes, Carla, et al. (author)
  • Wood ash application in a managed Norway spruce plantation did not affect ectomycorrhizal diversity or N retention capacity
  • 2019
  • In: Fungal Ecology. - : Elsevier BV. - 1754-5048. ; 39, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Ectomycorrhizal (ECM) fungi are key players in N cycling in coniferous forests, and forest management such as application of wood ash can affect their functionality. The aim of this study was to determine the effects of wood ash application on ECM fungal mycelial production, capacity to retain N, diversity and community composition. In-growth mesh bags were installed in control and treated plots. After 6 months, 15N labeled ammonium and nitrate were applied into the mesh bags, and 24 h later extramatrical mycelium (EMM) was extracted and analyzed. Wood ash had no effects on EMM in-growth, N retention capacity, diversity or community composition. In contrast, there were significant seasonal differences in the amount of EMM produced. These results demonstrate that applying up to 6 t ha−1 of wood ash in this type of plantation forest is a safe management practice that does not increase N leaching or negatively affect ECM fungi.
  •  
6.
  • Heděnec, Petr, et al. (author)
  • Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties
  • 2023
  • In: Forest Ecology and Management. - : Elsevier BV. - 0378-1127. ; 527
  • Journal article (peer-reviewed)abstract
    • Soils harbor a vast diversity of soil microbiota, which play a crucial role in key ecosystem processes such as litter transformation and mineralization, but how complex plant-soil interactions shape the diversity and composition of soil microbiota remains elusive. We performed amplicon sequencing of DNA isolated from mineral topsoil of six common European trees planted in multi-site common garden monoculture stands of broadleaved maple and ash associated with arbuscular mycorrhiza (AM), broadleaved beech, lime and oak associated with ectomycorrhizal fungi (ECM) and coniferous spruce associated with ECM. The main aim of this study was to evaluate the effects of tree species identity, traits and mycorrhizal associations on diversity, community structure, cohesion, and shift in the relative abundance of taxonomic and functional groups of soil bacteria, fungi and nematodes. Our results revealed that soils beneath broadleaved trees hosted higher OTU richness of bacteria, fungi, and nematodes than under Norway spruce. Broadleaved tree species associated with AM fungi showed higher cohesion of bacterial and fungal communities than broadleaved trees associated with ECM fungi, but the cohesion of nematode communities was higher under trees associated with ECM fungi than under trees associated with AM fungi. Copiotrophic bacteria, fungal saprotrophs and bacterivorous nematodes were associated with ash, maple and lime having high soil pH, and high litter decomposition indices, while oligotrophic bacteria, ectomycorrhizal fungi and fungivorous nematodes were associated with beech, oak and Norway spruce that had low soil pH and low litter decomposition indices. Tree species associated with AM fungi had a high proportion of copiotrophic bacteria and saprotrophic fungi while trees associated with ECM fungi showed a high relative abundance of oligotrophic bacteria, ECM fungi and fungivorous nematodes. The different abundances of these functional groups support the more inorganic nutrient economy of AM tree species vs the more organic dominated nutrient economy of ECM tree species. The bacterial community was indirectly affected by litter quality via soil properties, while the fungal community was directly affected by litter quality and tree species. The functional groups of nematodes mirrored the communities of bacteria and fungi, thereby indicating the main and active groups of the tree species-specific microbial communities. Our study suggested that tree species identity, traits, and mycorrhizal association substantially shape microbial communities via a direct effect of litter chemistry as well as via litter-mediated soil properties.
  •  
7.
  • Hicks, Lettice C., et al. (author)
  • Toward a function-first framework to make soil microbial ecology predictive
  • 2022
  • In: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:e03594
  • Journal article (peer-reviewed)abstract
    • Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial function to community composition and structure. Here, we propose a function-first framework to predict how microbial communities influence ecosystem functions. We first view the microbial community associated with a specific function as a whole and describe the dependence of microbial functions on environmental factors (e.g., the intrinsic temperature dependence of bacterial growth rates). This step defines the aggregate functional response curve of the community. Second, the contribution of the whole community to ecosystem function can be predicted, by combining the functional response curve with current environmental conditions. Functional response curves can then be linked with taxonomic data in order to identify sets of “biomarker” taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indicator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition. In this paper, we provide three examples to illustrate the proposed framework, whereby the dependence of bacterial growth on environmental factors, including temperature, pH, and salinity, is defined as the functional response curve used to interlink soil bacterial community structure and function. Applying this framework will make it possible to predict ecosystem functions directly from microbial community composition.
  •  
8.
  • Lindahl, Björn, et al. (author)
  • Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide
  • 2013
  • In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 199:1, s. 288-299
  • Research review (peer-reviewed)abstract
    • * Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes, pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs. * Taking advantage of the collective experience of six research groups, we here review the different stages involved in fungal community analysis, from field sampling via laboratory procedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives, and solutions. * Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples and replicates that encompass the targeted variation in community composition, selection of marker regions and primers, options for amplification and multiplexing, handling of sequencing errors, and taxonomic identification. * Without awareness of methodological biases, limitations of markers, and bioinformatics challenges, large-scale sequencing projects risk yielding artificial results and misleading conclusions.
  •  
9.
  • Nielsen, Knud Brian, et al. (author)
  • Colonization of new land by arbuscular mycorrhizal fungi
  • 2016
  • In: Fungal Ecology. - : Elsevier BV. - 1754-5048. ; 20, s. 22-29
  • Journal article (peer-reviewed)abstract
    • The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities was assessed through 454 pyrosequencing. Internal community structure was investigated through fitting the rank-abundance of Operational Taxonomic Units to different models. Heterogeneity of communities within islands was assessed by analysis of group dispersion. The mean OTU richness per sample was significantly lower on the artificial island than on the neighboring natural island, indicating that richness of the colonizing AM fungal community is restricted by limited dispersal. The AM fungal communities colonizing the new island appeared to be a non-random subset of communities on the natural and much older neighboring island, which points to high colonization potential of certain - probably early successional - mycorrhizal fungi, likely assisted by migratory birds.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view