SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kljun N) "

Sökning: WFRF:(Kljun N)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
2.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
3.
  • Podgrajsek, Eva, et al. (författare)
  • Methane fluxes from a small boreal lake measured with the eddy covariance method
  • 2016
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 61:Supplement 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluxes of methane, CH4, were measured with the eddy covariance (EC) method at a small boreal lake in Sweden. The mean CH4 flux during the growing season of 2013 was 20.1 nmol m(-2) s(-1) and the median flux was 16 nmol m(-2) s(-1) (corresponding to 1.7 mmol m(-2) d(-1) and 1.4 mmol m(-2) d(-1)). Monthly mean values of CH4 flux measured with the EC method were compared with fluxes measured with floating chambers (FC) and were in average 62% higher over the whole study period. The difference was greatest in April partly because EC, but not FC, accounted for fluxes due to ice melt and a subsequent lake mixing event. A footprint analysis revealed that the EC footprint included primarily the shallow side of the lake with a major inlet. This inlet harbors emergent macrophytes that can mediate high CH4 fluxes. The difference between measured EC and FC fluxes can hence be explained by different footprint areas, where the EC system sees the part of the lake presumably releasing higher amounts of CH4. EC also provides more frequent measurements than FC and hence more likely captures ebullition events. This study shows that small lakes have CH4 fluxes that are highly variable in time and space. Based on our findings we suggest to measure CH4 fluxes from lakes as continuously as possible and to aim for covering as much of the lakes surface as possible, independently of the selected measuring technique.
  •  
4.
  • Stoy, Paul C., et al. (författare)
  • Methane efflux from an American bison herd
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:3, s. 961-975
  • Tidskriftsartikel (refereegranskat)abstract
    • American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison reintroduction creates multiple environmental benefits, but impacts on greenhouse gas emissions are poorly understood. Bison are thought to have produced some 2 Tg yr-1 of the estimated 9 15 Tg yr-1 of pre-industrial enteric methane emissions, but few measurements have been made due to their mobile grazing habits and safety issues associated with measuring non-domesticated animals. Here, we measure methane and carbon dioxide fluxes from a bison herd on an enclosed pasture during daytime periods in winter using eddy covariance. Methane emissions from the study area were negligible in the absence of bison (mean ± standard deviation = -0.0009 ± 0.008 μmol m-2 s-1) and were significantly greater than zero, 0.048 ± 0.082 μmol m-2 s-1, with a positively skewed distribution, when bison were present. We coupled bison location estimates from automated camera images with two independent flux footprint models to calculate a mean per-animal methane efflux of 58.5 μmol s-1 per bison, similar to eddy covariance measurements of methane efflux from a cattle feedlot during winter. When we sum the observations over time with conservative uncertainty estimates we arrive at 81 g CH4 per bison d-1 with 95 % confidence intervals between 54 and 109 g CH4 per bison d-1. Uncertainty was dominated by bison location estimates (46 % of the total uncertainty), then the flux footprint model (33 %) and the eddy covariance measurements (21 %), suggesting that making higher-resolution animal location estimates is a logical starting point for decreasing total uncertainty. Annual measurements are ultimately necessary to determine the full greenhouse gas burden of bison grazing systems. Our observations highlight the need to compare greenhouse gas emissions from different ruminant grazing systems and demonstrate the potential for using eddy covariance to measure methane efflux from non-domesticated animals.
  •  
5.
  • Vestin, Patrik, et al. (författare)
  • Impacts of stump harvesting on carbon dioxide, methane and nitrous oxide fluxes
  • 2022
  • Ingår i: Iforest-Biogeosciences and Forestry. - : Italian Society of Sivilculture and Forest Ecology (SISEF). - 1971-7458. ; 15, s. 148-162
  • Tidskriftsartikel (refereegranskat)abstract
    • During 2010-2013, we investigated the effects of stump harvesting on greenide (N2O) with the flux-gradient technique at four experimental plots in a hemiboreal forest in Sweden. All plots were clear-cut and soil scarified and two of the plots were additionally stump harvested. The two clear-cut plots served as control plots. Due to differences in topography, we had one wetter and one drier plot of each treatment. All plots exhibited substantial emissions of GHGs and we noted significant effects of wetness on CO2, CH4 and N2O fluxes within treatments and significant effects of stump harvesting on CO2 and N2O fluxes at the dry plots. The CO2 emissions were lower at the dry stump harvested plot than at the dry control, but when estimated emissions from the removed stumps were added, total CO2 emissions were higher at the stump harvested plot, indicating a small enhancement of soil respiration. In addition, we noted significant emissions of N2O at this plot. At the wet plots, CO2 emissions were higher at the stump harvested plot, also suggesting a treatment effect but differences in wetness and vegetation cover at these plots make this effect more uncertain. At the wet plots, we noted sustained periods (weeks to months) of net N2O uptake. During the year with simultaneous measurements of the abovementioned GHGs, GHG budgets were 1.224??103 and 1.442??103 gm-2 of CO2-equivalents at the wet and dry stump harvested plots, respectively, and 1.070??103 and 1.696??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. CO2 fluxes dominated GHG budgets at all plots but N2O contributed with 17% at the dry stump harvested plot. For the full period 2010-2013, total carbon (CO2+CH4) budgets were 4.301??103 and 4.114??103 g m-2 of CO2-eqvivalents at the wet and dry stump harvest plots, respectively and 4.107??103 and 5.274??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. Our results support recent studies suggesting that stump harvesting does not result in substantial increase in CO2 emissions but uncertainties regarding GHG fluxes (especially N2O) remain and more long-term measurements are needed before robust conclusions can be drawn.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy