SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolhinen V.) "

Sökning: WFRF:(Kolhinen V.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gorelov, D., et al. (författare)
  • Measuring independent yields of fission products using a penning trap
  • 2015
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:7, s. 869-871
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method for determining independent fission products is used in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The method combines the chemical universality of the ion guide technique and the unique properties of the Penning trap. A beam of charged particles is formed by stopping fission products in gaseous helium. The Penning trap is employed as a highly accurate filter to identify particles by their mass. The yields of fission products are determined by the ion count downstream of the trap. The setup’s mass resolving power is on the order of 105 with a radio frequency excitation time of 400 ms. Such high mass resolution occasionally allows us not only to separate nuclides but to separate the isomeric and ground states of nuclei as well. Independent yields of fission products are measured in the fission reaction of the 232Th isotope by protons with an energy of 25 MeV. A short description of the method ae nd soexperimental data are supplememnted by the results fro theoretical calculations.
  •  
3.
  • Gorelov, D., et al. (författare)
  • Developments for neutron-induced fission at IGISOL-4
  • 2016
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584.
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.
  •  
4.
  •  
5.
  • Gorelov, D., et al. (författare)
  • Isomeric Yield Ratios of Fission Products Measured with the Jyfltrap
  • 2014
  • Ingår i: Acta Physica Polonica B. - 0587-4254 .- 1509-5770. ; 45:2, s. 211-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental methods to determine isomeric yield ratios usually apply gamma-spectroscopic techniques. In such methods, ground and isomeric states are distinguished by their decays. In the present work, several isomeric yield ratios of fission products have been measured by utilizing capabilities of the double Penning-trap mass spectrometer JYFLTRAP, where isomeric and ground state were separated by their masses. To verify the new experimental technique, the results were compared to those from gamma-spectroscopy measurements.
  •  
6.
  • Kolhinen, V. S., et al. (författare)
  • Recommissioning of JYFLTRAP at the new IGISOL-4 facility
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 317:Part B, s. 506-509
  • Tidskriftsartikel (refereegranskat)abstract
    • The JYFLTRAP double Penning-trap system was moved to a new location along with the Ion Guide Isotope Separator On-line (IGISOL) facility at the Accelerator Laboratory of the University of Jyväskylä. The move made it possible to upgrade various parts of the facility. For example, separate beam lines for JYFLTRAP and the collinear laser spectroscopy station were constructed after the radio-frequency quadrupole cooler and buncher. In this contribution we give an overview of the new JYFLTRAP facility and results from the first stable ion-beam tests.
  •  
7.
  • Lantz, Mattias, et al. (författare)
  • Fission yield measurements at IGISOL
  • 2016
  • Ingår i: CNR*15 - 5th International Workshop On Compound-Nuclear Reactions And Related Topics. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutron-induced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyvaskyla, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
  •  
8.
  •  
9.
  • Lantz, Mattias, et al. (författare)
  • Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies
  • 2012
  • Ingår i: Use of Neutron Beams for High Precision Nuclear Data Measurements. - Vienna.
  • Konferensbidrag (refereegranskat)abstract
    • The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyväskylä, has been supplied with a new cyclotron which will provide protons of the order of 100 μA with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyväskylä are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. Inorder to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.
  •  
10.
  • Mattera, Andrea, 1985-, et al. (författare)
  • A neutron source for IGISOL-JYFLTRAP : Design and characterisation
  • 2017
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 53:173
  • Tidskriftsartikel (refereegranskat)abstract
    • A white neutron source based on the Be(p,nx) reaction for fission studies at the IGISOLJYFLTRAP facility has been designed and tested. 30 MeV protons impinge on a 5mm thick water-cooled beryllium disc. The source was designed to produce at least 1012 fast neutrons/s on a secondary fission target, in order to reach competitive production rates of fission products far from the valley of stability.The Monte Carlo codes MCNPX and FLUKA were used in the design phase to simulate the neutron energy spectra. Two experiments to characterise the neutron field were performed: the first was carried out at The Svedberg Laboratory in Uppsala (SE), using an Extended-Range Bonner Sphere Spectrometer and a liquid scintillator which used the time-of-flight (TOF) method to determine the energy of the neutrons; the second employed Thin-Film Breakdown Counters for the measurement of the TOF, and activation foils, at the IGISOL facility in Jyväskylä (FI). Design considerations and the results of the two characterisation measurements are presented, providing benchmarks for the simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy