SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kowalski Karol) "

Sökning: WFRF:(Kowalski Karol)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Filipowicz, Natalia, et al. (författare)
  • Comprehensive cancer-oriented biobanking resource of human samples for studies of post-zygotic genetic variation involved in cancer predisposition
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The progress in translational cancer research relies on access to well-characterized samples from a representative number of patients and controls. The rationale behind our biobanking are explorations of post-zygotic pathogenic gene variants, especially in non-tumoral tissue, which might predispose to cancers. The targeted diagnoses are carcinomas of the breast (via mastectomy or breast conserving surgery), colon and rectum, prostate, and urinary bladder (via cystectomy or transurethral resection), exocrine pancreatic carcinoma as well as metastases of colorectal cancer to the liver. The choice was based on the high incidence of these cancers and/or frequent fatal outcome. We also collect age-matched normal controls. Our still ongoing collection originates from five clinical centers and after nearly 2-year cooperation reached 1711 patients and controls, yielding a total of 23226 independent samples, with an average of 74 donors and 1010 samples collected per month. The predominant diagnosis is breast carcinoma, with 933 donors, followed by colorectal carcinoma (383 donors), prostate carcinoma (221 donors), bladder carcinoma (81 donors), exocrine pancreatic carcinoma (15 donors) and metachronous colorectal cancer metastases to liver (14 donors). Forty percent of the total sample count originates from macroscopically healthy cancer-neighboring tissue, while contribution from tumors is 12%, which adds to the uniqueness of our collection for cancer predisposition studies. Moreover, we developed two program packages, enabling registration of patients, clinical data and samples at the participating hospitals as well as the central system of sample/data management at coordinating center. The approach used by us may serve as a model for dispersed biobanking from multiple satellite hospitals. Our biobanking resource ought to stimulate research into genetic mechanisms underlying the development of common cancers. It will allow all available "-omics" approaches on DNA-, RNA-, protein- and tissue levels to be applied. The collected samples can be made available to other research groups.
  •  
2.
  • de Jong, Wibe A, et al. (författare)
  • Utilizing high performance computing for chemistry : parallel computational chemistry
  • 2010
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 12:26, s. 6896-6920
  • Tidskriftsartikel (refereegranskat)abstract
    • Parallel hardware has become readily available to the computational chemistry research community. This perspective will review the current state of parallel computational chemistry software utilizing high-performance parallel computing platforms. Hardware and software trends and their effect on quantum chemistry methodologies, algorithms, and software development will also be discussed.
  •  
3.
  • He, Liang, et al. (författare)
  • A Coarse-Grained Molecular Model for Simulating Self-Healing of Bitumen
  • 2022
  • Ingår i: Applied Sciences. - : MDPI AG. - 2076-3417. ; 12:20, s. 10360-
  • Tidskriftsartikel (refereegranskat)abstract
    • The longevity of asphalt pavements is a key focus of road engineering, which closely relates to the self-healing ability of bitumen. Our work aims to establish a CGMD model and matched force field for bitumen and break through the limitations of the research scale to further explore the microscopic mechanism of bitumen self-healing. In this study, a CGMD mapping scheme containing 16 kinds of beads is proposed, and the non-bond potential energy function and bond potential energy function are calculated based on all-atom simulation to construct and validate a coarse-grained model for bitumen. On this basis, a micro-crack model with a width of 36.6nm is simulated, and the variation laws of potential energy, density, diffusion coefficient, relative concentration and temperature in the process of bitumen self-healing are analyzed with the cracking rate parameter proposed to characterize the degree of bitumen crack healing. The results show that the computational size of the coarse-grained simulation is much larger than that of the all-atom, which can explain the self-healing mechanism at the molecular level. In the self-healing process, non-bonded interactions dominate the molecular movement, and differences in the decreased rate of diffusion among the components indicate that saturates and aromatics play a major role in self-healing. Meanwhile, the variations in crack rates reveal that healing time is inversely proportional to temperature. The impact of increasing temperature on reducing healing time is most obvious when the temperature approaches the glass transition temperature (300 K).
  •  
4.
  • He, Liang, et al. (författare)
  • Discrete element simulation of porous asphalt mixture clogging law
  • 2023
  • Ingår i: Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering. - : Chang'an University. - 1671-1637. ; 23:2, s. 78-91
  • Tidskriftsartikel (refereegranskat)abstract
    • To reveal the pore clogging law of porous asphalt mixture, the combination study of model experiment and simulation of porous asphalt mixture clogging was conducted. The pore characteristics of the porous asphalt mixture were analyzed based on the CT-scanning and discrete element software PFC3D V5. 0, and the pore data of the porous asphalt mixture were obtained. The aggregates of different particle sizes were put into PFC3D V5. 0, and the compacted virtual specimens were generated according to the pore characteristics. The accuracy of the model was verified by comparing the pore images of actual specimens with the MATLAB slices. In the self-weight condition, the simulation was set with the porous asphalt mixture specimen being intruded by clogging particles with specific gradation composition. The data of indoor experiments were compared and verified. The particle sizes of clogging particles were changed, and the pore decay rates of the specimen were analyzed. The clogging-sensitive particles were identified. In the self-weight condition, the fluid simulation experiment was introduced, and the change law of specimen clogging was analyzed by changing the seepage rate of fluid. Analysis results show that the virtual specimen generated by PFC3D V5. 0 has high accuracy, and the simulation reveals the clogging law of the specimen. The small particles not only accumulate at the throat position causing clogging, but also congregate and interlock with the particles of larger sizes resulting in clogging too. In the self-weight condition, the clogging is mainly concentrated at the upper 30 mm of the mixture specimen, and the size distribution of corresponding clogging-sensitive particles is 0. 150-0. 600 mm. The size distribution of clogging particles has a great impact on the clogging results. In the conditions of gravity and fluid, with the seepage rate increasing from 0. 005 m • s-1 to 0. 030 m • s-1, the changing rate of pore decay rate increases. In addition, the clogging particles remaining in the mixture decrease, accompanied by the reduction of the pore decay rate. Therefore, the local rainfall conditions should also be considered in the design and maintenance of drainage asphalt pavement. 2 tabs, 20 figs, 30 refs. © 2023 Chang'an University. All rights reserved.
  •  
5.
  • Aad, G., et al. (författare)
  • 2012
  • swepub:Mat__t (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy