SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kurzan B.) "

Sökning: WFRF:(Kurzan B.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
2.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
3.
  • Schneider, P. A., et al. (författare)
  • The dependence of confinement on the isotope mass in the core and the edge of AUG and JET-ILW H-mode plasmas
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments in ASDEX Upgrade (AUG) and JET with the ITER-like wall (JET-ILW) are performed to separate the pedestal and core contributions to confinement in H-modes with different main ion masses. A strong isotope mass dependence in the pedestal is found which is enhanced at high gas puffing. This is because the ELM type changes when going from D to H for matched engineering parameters, which is likely due to differences in the inter ELM transport with isotope mass. The pedestal can be matched in H and D plasmas by varying only the triangularity and keeping the engineering parameters relevant for core transport the same. With matched pedestals Astra/TGLF (Sat1geo) core transport simulations predict the experimental profiles equally well for H and D. These core transport simulations show a negligible mass dependence and no gyro-Bohm scaling is observed. However, to match the experimental observations at medium beta it is required to take the fast-ion dilution and rotation into account. This is not enough for high beta plasmas where for the first time a profile match between H and D plasmas was achieved experimentally. Under these conditions quasilinear modelling with TGLF over predicts the transport in the core of H and D plasmas alike.
  •  
4.
  • De Angeli, M., et al. (författare)
  • Post-mortem and in-situ investigations of magnetic dust in ASDEX Upgrade
  • 2023
  • Ingår i: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Pre-plasma mobilization of magnetic dust can be an important issue for future fusion reactors where plasma breakdown is critical. A combined on-line and off-line study of magnetic dust in ASDEX Upgrade is reported. Post-mortem collection revealed similar composition and morphology compared to other tokamaks, but the overall amount was much smaller. Optical and IR camera diagnostics excluded dust flybys prior to plasma start-up. The negative detection is discussed in light of the magnetic dust properties, the strength of mobilizing forces and the temporal evolution of the magnetic field.
  •  
5.
  • Dunne, M. G., et al. (författare)
  • Global performance enhancements via pedestal optimisation on ASDEX Upgrade
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.
  •  
6.
  • Dunne, M. G., et al. (författare)
  • The role of the density profile in the ASDEX-Upgrade pedestal structure
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental evidence for the impact of a region of high density localised in the high-field side scrape-off layer (the HFSHD) on plasma confinement is shown in various dedicated experiments on ASDEX Upgrade (AUG). Increasing main ion fuelling is shown to increase the separatrix density and shift the density profile outwards. Predictive pedestal modelling of this shift indicates a 25% decrease in the attainable pedestal top pressure, which compares well with experimental observations in the gas scan. Since the HFSHD can be mitigated by applying nitrogen seeding, a combined scan in fuelling rate, heating power, and nitrogen seeding is presented. Significant increases in the achievable pedestal top pressure are observed with seeding, in particular at high heating powers, and are correlated with inward shifted density profiles and a reduction of the HFSHD and separatrix density. Interpretive linear stability analysis also confirms the impact of a radially shifted pressure profile on peeling-ballooning stability, with an inward shift allowing access to higher pressure gradients and pedestal widths.
  •  
7.
  •  
8.
  • Li, L., et al. (författare)
  • Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:12, s. Art. no. 126007-
  • Tidskriftsartikel (refereegranskat)abstract
    • Toroidal computations are performed using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to understand correlations between the plasma response and the observed mitigation of the edge localized modes (ELM) using resonant magnetic perturbation fields in ASDEX Upgrade. In particular, systematic numerical scans of the edge safety factor reveal that the amplitude of the resonant poloidal harmonic of the response radial magnetic field near the plasma edge, as well as the plasma radial displacement near the X-point, can serve as good indicators for predicting the optimal toroidal phasing between the upper and lower rows of coils in ASDEX Upgrade. The optimal coil phasing scales roughly linearly with the edge safety factor , for various choices of the toroidal mode number n = 1-4 of the coil configuration. The optimal coil phasing is also predicted to vary with the upper triangularity of the plasma shape in ASDEX Upgrade. Furthermore, multiple resonance effects of the plasma response, with continuously varying , are computationally observed and investigated.
  •  
9.
  • Liu, Yueqiang, 1971, et al. (författare)
  • Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q(95) dependence, and toroidal torques
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys, Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503), A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with q95 3.8 (q95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low a (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement, The core kink response is typically weak for the a = 4 coil configuration at low q, and for the n = 2 configuration but only at high q (q(95) similar to 5.5). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component, This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the plasma edge region. For high q plasmas, however, significant amount of torque is also produced in the bulk plasma region, and the contributions from the electromagnetic, the NTV, and the torque associated with the Reynolds stress, all
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy