SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuznetsov Ivan) "

Sökning: WFRF:(Kuznetsov Ivan)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almroth Rosell, Elin, 1977, et al. (författare)
  • A new approach to model oxygen dependent benthic phosphate fluxes in the Baltic Sea
  • 2015
  • Ingår i: Journal of Marine Systems. - : Elsevier BV. - 0924-7963 .- 1879-1573. ; 144, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The new approach to model the oxygen dependent phosphate release by implementing formulations of the oxygen penetration depths (OPD) and mineral bound inorganic phosphorus pools to the Swedish Coastal and Ocean Biogeochemical model (SCOBI) is described. The phosphorus dynamics and the oxygen concentrations in the Baltic proper sediment are studied during the period 1980-2008 using SCOBI coupled to the 3D-Rossby Centre Ocean model. Model data are compared to observations from monitoring stations and experiments. The impact from oxygen consumption on the determination of the OPD is found to be largest in the coastal zones where also the largest OPD are found. In the deep water the low oxygen concentrations mainly determine the OPD. Highest modelled release rate of phosphate from the sediment is about 59 x 10(3) t P year(-1) and is found on anoxic sediment at depths between 60-150 m, corresponding to 17% of the Baltic proper total area. The deposition of organic and inorganic phosphorus on sediments with oxic bottom water is larger than the release of phosphorus, about 43 x 10(3) t P year(-1). For anoxic bottoms the release of total phosphorus during the investigated period is larger than the deposition, about 19 x 10(3) t P year(-1). In total the net Baltic proper sediment sink is about 23.7 x 10(3) t P year(-1). The estimated phosphorus sink efficiency of the entire Baltic Sea is on average about 83% during the period.
  •  
2.
  • Fransner, Filippa, et al. (författare)
  • Non-Redfieldian Dynamics Explain Seasonal pCO2 Drawdown in the Gulf of Bothnia
  • 2018
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 123:1, s. 166-188
  • Tidskriftsartikel (refereegranskat)abstract
    • High inputs of nutrients and organic matter make coastal seas places of intense air-sea CO2 exchange. Due to their complexity, the role of coastal seas in the global air-sea CO2 exchange is, however, still uncertain. Here, we investigate the role of phytoplankton stoichiometric flexibility and extracellular DOC production for the seasonal nutrient and CO2 partial pressure (pCO2) dynamics in the Gulf of Bothnia, Northern Baltic Sea. A 3-D ocean biogeochemical-physical model with variable phytoplankton stoichiometry is for the first time implemented in the area and validated against observations. By simulating non-Redfieldian internal phytoplankton stoichiometry, and a relatively large production of extracellular dissolved organic carbon (DOC), the model adequately reproduces observed seasonal cycles in macronutrients and pCO2. The uptake of atmospheric CO2 is underestimated by 50% if instead using the Redfield ratio to determine the carbon assimilation, as in other Baltic Sea models currently in use. The model further suggests, based on the observed drawdown of pCO2, that observational estimates of organic carbon production in the Gulf of Bothnia, derived with the method, may be heavily underestimated. We conclude that stoichiometric variability and uncoupling of carbon and nutrient assimilation have to be considered in order to better understand the carbon cycle in coastal seas.
  •  
3.
  •  
4.
  • Hordoir, Robinson, et al. (författare)
  • Nemo-Nordic 1.0 : a NEMO-based ocean model for the Baltic and North seas - research and operational applications
  • 2019
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 12:1, s. 363-386
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Nemo-Nordic, a Baltic and North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized countries, the Baltic and North seas and their assets associated with shipping, fishing and tourism are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts and enabling climatic studies are important tools for the shipping infrastructure and to get a better understanding of the effects of climate change on the marine ecosystems. Nemo-Nordic is intended to be a tool for both short-term and long-term simulations and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain and the inclusion of the two seas are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short-term capabilities of the model are presented, especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer timescales, with a focus on the major Baltic inflows and the variability in deep-water salinity in the Baltic Sea.
  •  
5.
  •  
6.
  • Lobov, A., et al. (författare)
  • Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3
  • 2006
  • Ingår i: Ferroelectrics (Print). - : Informa UK Limited. - 0015-0193 .- 1563-5112. ; 341:1, s. 109-116
  • Tidskriftsartikel (refereegranskat)abstract
    • The shapes of isolated domains produced by application of the uniform external electric field in different experimental conditions were investigated experimentally in single crystalline lithium niobate LiNbO3 and lithium tantalate LiTaO3. The study of the domain kinetics by computer simulation and experimentally by polarization reversal of the model structure using two-dimensional regular electrode pattern confirms applicability of the kinetic approach to explanation of the experimentally observed evolution of the domain shape and geometry of the domain structure. It has been shown that the fast domain walls strictly oriented along X directions appear after domain merging.
  •  
7.
  • Meier, H. E. Markus, et al. (författare)
  • Assessment of Eutrophication Abatement Scenarios for the Baltic Sea by Multi-Model Ensemble Simulations
  • 2018
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess the impact of the implementation of the Baltic Sea Action Plan (BSAP) on the future environmental status of the Baltic Sea, available uncoordinated multi-model ensemble simulations for the Baltic Sea region for the twenty-first century were analyzed. The scenario simulations were driven by regionalized global general circulation model (GCM) data using several regional climate system models and forced by various future greenhouse gas emission and air- and river-borne nutrient load scenarios following either reference conditions or the BSAP. To estimate uncertainties in projections, the largest ever multi-model ensemble for the Baltic Sea comprising 58 transient simulations for the twenty-first century was assessed. Data from already existing simulations from different projects including regionalized GCM simulations of the third and fourth assessment reports of the Intergovernmental Panel on Climate Change based on the corresponding Coupled Model Intercomparison Projects, CMIP3 and CMIP5, were collected.Various strategies to weigh the ensemble members were tested and the results for ensemble mean changes between future and present climates are shown to be robust with respect to the chosen metric. Although (1) the model simulations during the historical period are of different quality and (2) the assumptions on nutrient load levels during present and future periods differ between models considerably, the ensemble mean changes in biogeochemical variables in the Baltic proper with respect to nutrient load reductions are similar between the entire ensemble and a subset consisting only of the most reliable simulations.Despite the large spread in projections, the implementation of the BSAP will lead to a significant improvement of the environmental status of the Baltic Sea according to both weighted and unweighted ensembles. The results emphasize the need for investigating ensembles with many members and rigorous assessments of models’ performance.
  •  
8.
  • Meier, H. E. Markus, et al. (författare)
  • Assessment of Uncertainties in Scenario Simulations of Biogeochemical Cycles in the Baltic Sea
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Following earlier regional assessment studies, such as the Assessment of Climate Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment, knowledge acquired from available literature about future scenario simulations of biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The identification and reduction of uncertainties of scenario simulations are issues for marine management. For instance, it is important to know whether nutrient load abatement will meet its objectives of restored water quality status in future climate or whether additional measures are required. However, uncertainties are large and their sources need to be understood to draw conclusions about the effectiveness of measures. The assessment of sources of uncertainties in projections of biogeochemical cycles based on authors' own expert judgment suggests that the biggest uncertainties are caused by (1) unknown current and future bioavailable nutrient loads from land and atmosphere, (2) the experimental setup (including the spin up strategy), (3) differences between the projections of global and regional climate models, in particular, with respect to the global mean sea level rise and regional water cycle, (4) differing model-specific responses of the simulated biogeochemical cycles to long-term changes in external nutrient loads and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions. Regular assessments of the models' skill (or quality compared to observations) for the Baltic Sea region and the spread in scenario simulations (differences among projected changes) as well as improvement of dynamical downscaling methods are recommended.
  •  
9.
  • Meier, H. E. Markus, et al. (författare)
  • Impact of Climate Change on Ecological Quality Indicators and Biogeochemical Fluxes in the Baltic Sea : A Multi-Model Ensemble Study
  • 2012
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 41:6, s. 558-573
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission's (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions. In case of nutrient load reductions required by the BSAP, water quality is only slightly improved. Based on the analysis of biogeochemical fluxes, we find that in warmer and more anoxic waters, internal feedbacks could be reinforced. Increased phosphorus fluxes out of the sediments, reduced denitrification efficiency and increased nitrogen fixation may partly counteract nutrient load abatement strategies.
  •  
10.
  • Meier, Markus, et al. (författare)
  • Comparing reconstructed past variations and future projections of the Baltic sea ecosystem first results from multi model ensemble simulations
  • 2012
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 7:3, s. 034005-
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850-2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850-2006, atmospheric, hydrological and nutrient forcings were reconstructed, based on historical measurements. For the future period 1961-2098, scenario simulations were driven by regionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air-and riverborne nutrient load scenarios (ranging from a pessimistic 'business-as-usual' to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher and salinities and oxygen concentrations may be lower than ever measured since 1850. There is also a tendency of increased eutrophication in the future, depending on the nutrient load scenario. Although cod biomass is mainly controlled by fishing mortality, climate change together with eutrophication may result in a biomass decline during the latter part of this century, even when combined with lower fishing pressure. Despite considerable shortcomings of state-of-the-art models, this study suggests that the future Baltic Sea ecosystem may unprecedentedly change compared to the past 150 yr. As stakeholders today pay only little attention to adaptation and mitigation strategies, more information is needed to raise public awareness of the possible impacts of climate change on marine ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Kuznetsov, Ivan (10)
Eilola, Kari (6)
Meier, H. E. Markus (5)
Savchuk, Oleg P. (5)
Neumann, Thomas (5)
Dieterich, Christian (5)
visa fler...
Nguyen, Son Tien, 19 ... (4)
Hordoir, Robinson (4)
Gustafsson, Bo G. (4)
Ivanov, Ivan Gueorgu ... (4)
Schimanke, Semjon (4)
Gröger, Matthias (4)
Svensson, B. G. (3)
Kuznetsov, A. (3)
Willander, Magnus, 1 ... (3)
Fransner, Filippa (3)
Itoh, H. (3)
Yakimova, Rositsa, 1 ... (3)
Gustafsson, Erik (3)
Müller-Karulis, Bärb ... (3)
Ohshima, T. (2)
Janzén, Erik, 1954- (2)
Höglund, Anders (2)
Omstedt, Anders, 194 ... (2)
Döös, Kristofer (2)
Axell, Lars (2)
Andersson, Helén (2)
Jönsson, Anette (2)
Gallo, Katia (2)
Falahat, Saeed (2)
Haapala, Jari (2)
Tuomi, Laura (2)
Saraiva, Sofia (2)
Isoya, J. (2)
Zhao, Qing Xiang, 19 ... (2)
Pemberton, Per (2)
Liu, Ye (2)
Hieronymus, Magnus (2)
Edman, Moa (2)
Lake, Iréne (2)
Friedland, René (2)
Muller-Karulis, Barb ... (2)
Hoglund, Anders (2)
Dietze, Heiner (2)
Ljungemyr, Patrik (2)
Nygren, Petter (2)
Nord, Adam (2)
Löptien, Ulrike (2)
Westerlund, Antti (2)
Isaev, Alexey (2)
visa färre...
Lärosäte
Stockholms universitet (9)
Göteborgs universitet (5)
Linköpings universitet (5)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
Lunds universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy