SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kyprianidis Konstantinos G.) "

Sökning: WFRF:(Kyprianidis Konstantinos G.)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gkoutzamanis, V. G., et al. (författare)
  • Conceptual design and energy storage positioning aspects for a hybrid-electric light aircraft
  • 2020
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884140
  • Konferensbidrag (refereegranskat)abstract
    • This work focuses on the feasibility of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200-600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on electric propulsion architectures. The potential entry into service of such aircraft is foreseen in 2030. A literature review is performed, to identify similar concepts that are under research and development. After the requirements definition, the first level of conceptual design is employed. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space. Additionally, a methodology for the energy storage positioning is provided, to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/parallel partial hybrid) and the energy storage operational characteristics. The design choices are driven by the aim to reduce CO2 emissions and accommodate boundary layer ingestion engines, with aircraft electrification. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the farfetched battery necessities. It is also highlighted that compliance with airworthiness certifications is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (12% lower energy consumption and larger CO2 reduction), compared to the higher degree of hybridization (50%), with respect to the conventional configuration.
  •  
2.
  • Gkoutzamanis, Vasilis G., et al. (författare)
  • Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft
  • 2021
  • Ingår i: Journal of engineering for gas turbines and power. - : ASME International. - 0742-4795 .- 1528-8919. ; 143:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is a feasibility study of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200-600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on alternative propulsion architectures. The potential entry into service (EIS) is foreseen beyond 2030. A literature review is performed to identify similar concepts under research and development. After the requirements' definition, the first level of conceptual design is employed. The objective of design selections is driven by the need to reduce CO2 emissions and accommodate aircraft electrification with boundary layer ingestion engines. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space, incorporating a parametric analysis for the consideration of boundary layer ingestion effects. Additionally, a methodology for the energy storage positioning is provided to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/ parallel partial hybrid), and the storage characteristics. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the farfetched battery necessities. It is also highlighted that compliance with airworthiness standards is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (-12% energy consumption) compared to the higher degree of hybridization (50%) and greater CO2 reduction, with respect to the conventional configuration.
  •  
3.
  • Xin, Zhao, et al. (författare)
  • A framework for optimization of hybrid aircraft
  • 2019
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608 ; 3
  • Konferensbidrag (refereegranskat)abstract
    • To achieve the goals of substantial improvements in efficiency and emissions set by Flightpath 2050, fundamentally different concepts are required. As one of the most promising solutions, electrification of the aircraft primary propulsion is currently a prime focus of research and development. Unconventional propulsion sub-systems, mainly the electrical power system, associated thermal management system and transmission system, provide a variety of options for integration in the existing propulsion systems. Different combinations of the gas turbine and the unconventional propulsion sub-systems introduce different configurations and operation control strategies. The trade-off between the use of the two energy sources, jet fuel and electrical energy, is primarily a result of the trade-offs between efficiencies and sizing characteristics of these sub-systems. The aircraft structure and performance are the final carrier of these trade-offs. Hence, full design space exploration of various hybrid derivatives requires global investigation of the entire aircraft considering these key propulsion sub-systems and the aircraft structure and performance, as well as their interactions. This paper presents a recent contribution of the development for a physics-based simulation and optimization platform for hybrid electric aircraft conceptual design. Modeling of each subsystem and the aircraft structure are described as well as the aircraft performance modeling and integration technique. With a focus on the key propulsion sub-systems, aircraft structure and performance that interfaces with existing conceptual design frameworks, this platform aims at full design space exploration of various hybrid concepts at a low TRL level.
  •  
4.
  • Celis, Cesar, et al. (författare)
  • Multidisciplinary Design Optimization of Aero Engines : Environmental Performance-Based Methodology
  • 2008
  • Ingår i: SYMKOM’08 Proceedings. CIEPLNE MASZYNY PRZEPLYWOWE. TURBOMACHINERY. No.133.
  • Konferensbidrag (refereegranskat)abstract
    • A methodology and tool that allows evaluating and quantifying aero engines design trade-offs originated as a consequence of addressing conflicting objectives such as low environmental impact and low operating costs is presented, and applied to a general case study to assess the feasibility of using new highly efficient engine configurations: intercooled- recuperated (ICR) engines. The case study results show that according to the ICR systems performance (heat exchangers effectiveness, pressure losses, and weight penalty) they could find usage in practical applications.
  •  
5.
  • Chen, Hao, et al. (författare)
  • Profitability Analysis of Integrating Fast Pyrolysis into Existing Combined Heat and Power Plants for Biofuel Production
  • 2024
  • Ingår i: Energy Proceedings. - : Scanditale AB.
  • Konferensbidrag (refereegranskat)abstract
    • Existing combined heat and power plants are seeking additional heat sinks to address challenges arising from the declining district heating demand and the increasing share of renewable energy in primary energy use in the coming decades. In the meantime, the world’s demand for sustainable fuel production keeps increasing due to the need to reduce carbon emissions and mitigate the effects of climate change. Fast pyrolysis, as a thermochemical conversion process based on widely available feedstocks such as lignocellulosic biomass, is promising to provide a long‐term supply of sustainable fuels, and could be integrated into existing combined heat and power plants due to the scalability and maturity of this method. This work focuses on techno‐economic analysis of integrating fast pyrolysis into existing combined heat and power plants for biofuel production. A process model of fast pyrolysis and bio‐oil upgrading is established in Aspen Plus to simulate the integration process. In this work, particular attention is given to the profitability analysis based on different final fuel products(crude pyrolysis oil and upgraded bio‐oil). Different hydrogen generation solutions (electrolysis, and gasification) for onsite bio‐oil upgrading are also examined. This study also performs an analysis of several economic indicators, such as payback period, net present value, and internal rate of return to provide insights for the future business model development for such systems. Sensitivity analysis is also carried out to further reveal the impacts of key variables in the economic evaluation process on the system’s profitability.
  •  
6.
  • Cunha, Henrique E., et al. (författare)
  • Investigation of the Potential of Gas Turbines for Vehicular Applications
  • 2012
  • Ingår i: <em><em>Proc. ASME</em>.</em> 44694; Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration. GT2012-68402. - 9780791844694 ; , s. 51-64
  • Konferensbidrag (refereegranskat)abstract
    • Nowadays, the reduction of fuel consumption and pollutant emissions has become a top priority for society and economy. In the past decades, some of the environmental advantages of the gas turbine (such as inherently low CO and unburned HC) have led some car manufacturers to evaluate the potential of this type of engine as prime mover. This paper suggests a strategy to assess the fuel consumption of gas turbines applied in road vehicles. Based on a quasistatic approach, a model was created that can simulate road vehicles powered by gas turbines, and thereafter a comparison was established with reciprocating engines. Within this study, material and turbomachinery technology developments that have taken place in micro gas turbines since the 1960’s have been considered. A 30% efficiency improvement target has been identified with respect to making the gas turbine fuel competitive to a diesel engine powering an SUV. It is the authors’ view that several technologies that could mature sufficiently within the next 10–15 years exist, such as uncooled ceramic turbines. Such technologies could help bridge the fuel efficiency gap in micro gas turbines and make them commercially competitive in the future for low-emissions vehicular applications. Furthermore, the system developed also allows the simulation of hybrid configurations using gas turbines as range extenders, a solution that some car manufacturers consider to be the most promising in the coming years.
  •  
7.
  • Da Silva, Edna, et al. (författare)
  • Preliminary design optimization of an organic Rankine cycle radial turbine rotor
  • 2017
  • Ingår i: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 3. - : American Society of Mechanical Engineers (ASME). - 9780791850831
  • Konferensbidrag (refereegranskat)abstract
    • The present study describes the application of a preliminary design approach for the optimization of an organic Rankine cycle radial turbine. Losses in the nozzle the rotor have initially been modelled using a mean-line design approach. The work focuses on a typical small-scale application of 50 kW, and two working fluids, R245fa (1,1,1,3,3,-pentafluoropropane) and R236fa (1,1,1,3,3,3-hexafluoropropane) are considered for validation purposes. Real gas formulations have been used based on the NIST REFPROP database. The validation is based on a design from the literature, and the results demonstrate close agreement the reference geometry and thermodynamic parameters. The total-to-total efficiencies of the reference turbine designs were 72% and 79%. Following the validation exercise, an optimization process was performed using a controlled random search algorithm with the turbine efficiency set as the figure of merit. The optimization focuses on the R245fa working fluid since it is more suitable for the operating conditions of the proposed cycle, enables an overpressure in the condenser and allows higher system efficiency levels. The R236fa working fluid was also used for comparison with the literature, and the reason is the positive slope of the saturation curve, somehow is possible to work with lower temperatures. Key preliminary design variables such as flow coefficient, loading coefficient, and length parameter have been considered. While several optimized preliminary designs are available in the literature with efficiency levels of up to 90%, the preliminary design choices made will only hold true for machines operating with ideal gases, i.e. typical exhaust gases from an airbreathing combustion engine. For machines operating with real gases, such as organic working fluids, the design choices need to be rethought and a preliminary design optimization process needs to be introduced. The efficiency achieved in the final radial turbine design operating with R245fa following the optimization process was 82.4%. A three-dimensional analysis of the flow through the blade section using computational fluid dynamics was carried out on the final optimized design to confirm the preliminary design and further analyze its characteristics.
  •  
8.
  • da Silva, E. R., et al. (författare)
  • Preliminary design, optimization and CFD analysis of an organic rankine cycle radial turbine rotor
  • 2021
  • Ingår i: Applied Thermal Engineering. - : Elsevier Ltd. - 1359-4311 .- 1873-5606. ; 195
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study describes the development of a preliminary design of a rotor for a radial turbine operating in an organic Rankine cycle. An optimization algorithm is applied to the preliminary design in order to obtain a better configuration of the geometric parameters that provides good quantification of the efficiency in the turbine, a priori, since the application of optimization processes applied to three-dimensional problems consume a lot of computational resources. The strategy makes it possible to obtain an optimized geometry to obtain flow field analyzes by applying computational fluid dynamics techniques. The working fluid R236fa was used for comparison with the literature, as it presents a positive slope of the saturation curve, and thus it is possible to work with lower temperatures. The R245fa working fluid is more suitable to the operating conditions of the proposed cycle, allows an overpressure in the condenser and allows higher levels of system efficiency. The losses at the rotor nozzle were initially modeled using a mean line design approach. The preliminary design was implemented in a commercial code Matlab®, as well as the optimization algorithm, CRSA (Controlled Random Search Algorithm), and the real gas formulations were used based on the NIST REFPROP® database. The present study is presented under three work routes: i) Development of the preliminary design methodology for a radial turbine that operates with ORC producing 50 kW of power, in order to compare with other methodologies presented in the literature. The results were compared with results observed in the literature, and demonstrate agreement between the reference geometry and the thermodynamic parameters. The total-total efficiencies of the reference turbine designs were 76.23% (R236fa) and 79.28% (R245fa); ii) Optimization by CRSA of the preliminary design of a radial turbine developed on the basis of flow coefficient and load coefficient correlations. A three-dimensional analysis of the flow through the blade section using computational fluid dynamics was performed in the final optimized design to confirm the preliminary design and subsequently analyze its characteristics. The optimization focused on the R245fa working fluid. Although several optimized preliminary designs are available in the literature with efficiency levels of up to 90%, the preliminary design choices made will only be valid for machines operating with ideal gases, that is, exhaust gases typical of an air-breathing combustion engine. For machines operating with real gases, such as organic working fluids, the design options need to be rethought and a preliminary design optimization process must be introduced. As an important result observed, an efficiency of 82.4% was obtained in the final design of the radial turbine operating with R245fa after the optimization process.
  •  
9.
  • Gkoutzamanis, V. G., et al. (författare)
  • Thermal Management System Considerations for a Hybrid-Electric Commuter Aircraft
  • 2022
  • Ingår i: Journal of thermophysics and heat transfer. - : AIAA International. - 0887-8722 .- 1533-6808. ; 36:3, s. 650-666
  • Tidskriftsartikel (refereegranskat)abstract
    • When it comes to novel aircraft concepts, thermal management system (TMS) design is a ubiquitous task, even at the conceptual design phase. This is owing to its impact on the total weight of the aircraft, cooling drag, and overall performance. The commuter air transportation has recently regained attention and is seen as a solution to employ partial or full electrification in the upcoming decades due to its low power requirement and potential benefit of faster “door-to-door” traveling. This work examines the TMS characteristics to cool a battery-powered aft-fan engine. A literature review is initially performed on other research associated with TMS design. The development and weight evaluation of the baseline TMS for this type of propulsive technology are then presented, including the characterization of system redundancy effects on the overall TMS weight. Results show that the TMS design is a function of the selected propulsive configuration and energy management throughout the mission. Primarily, this relates to the cooling method selected, the heat exchangers as the major mass contributors of the TMS, the positioning of components used for the propulsive configuration, and the imposed certification constraints. Finally, the selected TMS design is calculated to have a combined specific cooling of 0.79 kW∕kg. 
  •  
10.
  • Kyprianidis, Konstantinos G., et al. (författare)
  • EVA : A Tool for EnVironmental Assessment of Novel Propulsion Cycles
  • 2008
  • Ingår i: <em><em></em></em>ASME Turbo Expo 2008: Power for Land, Sea, and AirVolume 2: Controls, Diagnostics and Instrumentation; Cycle Innovations; Electric PowerBerlin, Germany, June 9–13, 2008. - 9780791843123 - 0791838242 ; , s. 547-556
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the development of a tool for EnVironmental Assessment (EVA) of novel propulsion cycles implementing the Technoeconomical Environmental and Risk Analysis (TERA) approach. For nearly 3 decades emissions certification and legislation has been mainly focused on the landing and take-off cycle. Exhaust emissions measurements of NOx, CO and unburned hydrocarbons are taken at Sea Level Static (SLS) conditions for 4 different power settings (idle, descent, approach and take-off) and are consecutively used for calculating the total emissions during the ICAO landing and take-off cycle. With the global warming issue becoming ever more important, stringent emissions legislation is soon to follow, focusing on all flight phases of an aircraft. Unfortunately, emissions measurements at altitude are either extremely expensive, as in the case of altitude test facility measurements, or unrealistic, as in the case of direct in flight measurements. Compensating for these difficulties, various existing methods can be used to estimate emissions at altitude from ground measurements. Such methods, however, are of limited help when it comes to assessing novel propulsion cycles or existing engine configurations with no SLS measurements available. The authors are proposing a simple and fast method for the calculation of SLS emissions, mainly implementing ICAO exhaust emissions data, corrections for combustor inlet conditions and technology factors. With the SLS emissions estimated, existing methods may be implemented to calculate emissions at altitude. The tool developed couples emissions predictions and environmental models together with engine and aircraft performance models in order to estimate the total emissions and Global Warming Potential of novel engine designs during all flight phases (i.e. the whole flight cycle). The engine performance module stands in the center of all information exchange. In this study, EVA and the described emissions prediction methodology have been used for the preliminary design analysis of three spool high bypass ratio turbofan engines. The capability of EVA to radically explore the design space available in novel engine configurations, while accounting for fuel burn and global warming potential during the whole flight cycle of an aircraft, is illustrated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
konferensbidrag (15)
tidskriftsartikel (3)
doktorsavhandling (1)
bokkapitel (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Kyprianidis, Konstan ... (11)
Kyprianidis, Konstan ... (8)
Ogaji, Stephen O. T. (7)
Pilidis, Pericles (7)
Kalfas, Anestis, I (4)
Singh, Riti (3)
visa fler...
Sethi, Vishal (3)
Sielemann, M. (3)
Grönstedt, Tomas, 19 ... (2)
Kalfas, A. I. (2)
Di Lorenzo, G (2)
Säterskog, M. (2)
Camacho, R. G. R. (2)
Gkoutzamanis, V. G. (2)
Pascovici, Daniele S ... (2)
Dahlquist, Erik, 195 ... (1)
Fransson, Torsten, P ... (1)
Chen, Hao (1)
Kavvalos, Mavroudis (1)
Jacob, C. (1)
Zhao, Xin, 1986 (1)
Celis, Cesar (1)
Mohseni, Martina (1)
Haslam, Antony (1)
Sandberg, A. H. (1)
Biancini, G. (1)
Cunha, Henrique E. (1)
Figueiredo Estrela D ... (1)
Da Silva, Edna (1)
Sarmiento, A. L. E. (1)
da Silva, E. R. (1)
Angulo, T. M. A. (1)
Srinivas, A. (1)
Mavroudi, D. (1)
Korbetis, G. (1)
Gkoutzamanis, Vasili ... (1)
Kavvalos, Mavroudis ... (1)
Srinivas, Arjun (1)
Mavroudi, Doukaini (1)
Korbetis, George (1)
Tsentis, S. E. (1)
Mylonas, O. S. V. (1)
Tsirikoglou, P. (1)
Kyprianidis, Konstan ... (1)
Sahoo, Smruti (1)
Xin, Zhao (1)
Ogaji, Stephen O.T. ... (1)
Colmenares Quintero, ... (1)
Barbosa, Joao R. (1)
Saravanmuttoo, Herbe ... (1)
visa färre...
Lärosäte
Mälardalens universitet (19)
Chalmers tekniska högskola (11)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Teknik (20)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy