SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lamentowicz Mariusz) "

Sökning: WFRF:(Lamentowicz Mariusz)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtsson, Fia, 1986-, et al. (författare)
  • Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
  • 2021
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 109:1, s. 417-431
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
  •  
2.
  • Granath, Gustaf, et al. (författare)
  • Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 15:16, s. 5189-5202
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
  •  
3.
  • Loisel, Julie, et al. (författare)
  • A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation
  • 2014
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 24:9, s. 1028-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45 degrees N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 +/- 3% (standard deviation) for Sphagnum peat, 51 +/- 2% for non-Sphagnum peat, and at 49 +/- 2% overall. Dry bulk density averaged 0.12 +/- 0.07 g/cm(3), organic matter bulk density averaged 0.11 +/- 0.05 g/cm(3), and total carbon content in peat averaged 47 +/- 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 +/- 2 (standard error of mean) g C/m(2)/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/m(2)/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.
  •  
4.
  • Sim, Thomas G., et al. (författare)
  • Regional variability in peatland burning at mid-to high-latitudes during the Holocene
  • 2023
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 305
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal re-cords from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (similar to 9e6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
5.
  • Chambers, Frank M., et al. (författare)
  • Development and refinement of proxy-climate indicators from peats
  • 2012
  • Ingår i: Quaternary International. - Oxford : Pergamon Press. - 1040-6182 .- 1873-4553. ; 268, s. 21-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Peat, especially from acidic mires (bogs), is a natural archive of past environmental change. Reconstructions of past climate from bogs commenced in the 19th Century through examination of visible peat stratigraphy, and later formed the basis for a postglacial climatic scheme widely used in Northwest Europe. Nevertheless, misconceptions as to how bogs grow led to a 50-year lacuna in peat-climate study, before the concept of 'cyclic regeneration' in bogs was refuted. In recent decades, research using proxy-climate indicators from bogs has burgeoned. A range of proxies for past hydrological change has been developed, as well as use of pollen, bog oaks and pines and other data to reconstruct past temperatures. Most of this proxy-climate research has been carried out in Northern Europe, but peat-based research in parts of Asia and North America has increased, particularly during the last decade, while research has also been conducted in Australia, New Zealand and South America. This paper reviews developments in proxy-climate reconstructions from peatlands; chronicles use of a range of palaeo-proxies such as visible peat stratigraphy, plant macrofossils, peat humification, testate amoebae and non-pollen palynomorphs: and explains the use of wiggle-match radiocarbon dating and relationship to climate shifts. It details other techniques being used increasingly, such as biomarkers, stable-isotopes, inorganic geochemistry and estimation of dust flux: and points to new proxies under development. Although explicit protocols have been developed recently for research on ombrotrophic mires, it must be recognised that not all proxies and techniques have universal applicability, owing to differences in species assemblages, mire formation, topographic controls, and geochemical characteristics. (C) 2011 Elsevier Ltd and INQUA. All rights reserved.
  •  
6.
  • de Jong, Rixt, et al. (författare)
  • Climate and Peatlands
  • 2010
  • Ingår i: Changing Climates, Earth Systems and Society. - Dordrecht : Springer Netherlands. - 9789048187157 - 9789048187164 ; , s. 85-121
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Peatlands are an important natural archive for past climatic changes, primarily due to their sensitivity to changes in the water balance and the dating possibilities of peat sediments. In addition, peatlands are an important sink as well as potential source of greenhouse gases. The first part of this chapter discusses a range of well-established and novel proxies studied in peat cores (peat humification, macrofossils, testate amoebae, stomatal records from subfossil leaves, organic biomarkers and stable isotope ratios, aeolian sediment influx and geochemistry) that are used for climatic and environmental reconstructions, as well as recent developments in the dating of these sediments. The second part focuses on the role that peatland ecosystems may play as a source or sink of greenhouse gases. Emphasis is placed on the past and future development of peatlands in the discontinuous permafrost areas of northern Scandinavia, and the role of regenerating mined peatlands in north-western Europe as a carbon sink or source.
  •  
7.
  • Edvardsson, Johannes, et al. (författare)
  • A multi-proxy reconstruction of moisture dynamics in a peatland ecosystem : A case study from Čepkeliai, Lithuania
  • 2019
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X. ; 106
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, six approaches were used to characterize hydrological changes in the Čepkeliai wetland complex (southeast Lithuania), namely (i) local water-table measurements (WTM), (ii) testate amoebae analysis, (iii) tree-ring width (TRW) series, (iv) peat stratigraphic data, (v) (hydro-) meteorological data (precipitation and river runoff), and (vi) a diachronic analysis of aerial photographs as well as historical maps. This multi-proxy framework provides complementary information on the hydrological evolution of the peatland and offers a unique opportunity to discuss the pros and cons of each approach. Local water-table measurements, for example, generated monthly resolved and precise (±0.01 m) hydrological information, but were limited to a 16-year period. On the other hand, the TRW data generated annually-resolved information linked to hydrological shifts over the period 1848–2018, but did not allow reconstruction of the amplitude of hydrological variations. Amongst the proxy records, the testate amoebae distribution is the only approach that gives a direct measurement of changes in water-table depths. At the same time, the approach is limited by chronological inaccuracies and weaker resolutions, similar to peat stratigraphic records. The meteorological data are theoretically representing the most highly resolved records. However, due to hydrological lags and feedbacks in peatlands, it was difficult to link regional changes observed in meteorological records to local changes in the peatland. The aerial photographs and historical maps offered an opportunity to document large-scale vegetation changes, which is useful for upscaling local results, but they may not capture rapid changes. Despite all these limitations, at Čepkeliai, most of the proxy records are in agreement with each other and suggest relatively moist conditions with water levels close to the peat surface during the late 1800s and early 1900s, followed by more detailed information towards the present showing shifts towards drier peat surface conditions during the 1930s and 1940s. The 1960s were dry, followed by a short, moist episode during the 1970s, and returning to drier conditions during the 1980s. A gradual change towards moister conditions was recorded over the 1990s and 2000s. The last decade in our records started with relatively wet conditions to end with lower water levels over the most recent years.
  •  
8.
  • Gallego-Sala, Angela V., et al. (författare)
  • Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:10, s. 907-
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
  •  
9.
  • Hamard, Samuel, et al. (författare)
  • Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient
  • 2021
  • Ingår i: Journal of Ecology. - : British Ecological Society. - 0022-0477 .- 1365-2745. ; 109:9, s. 3424-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • Phototrophic microbes, also known as micro-algae, display a high abundance in many terrestrial surface soils. They contribute to atmospheric carbon dioxide fluxes through their photosynthesis, and thus regulate climate similar to plants. However, microbial photosynthesis remains overlooked in most terrestrial ecosystems. Here, we hypothesise that phototrophic microbes significantly contribute to peatland C uptake, unless environmental conditions limit their development and their photosynthetic activity. To test our hypothesis, we studied phototrophic microbial communities in five peatlands distributed along a latitudinal gradient in Europe. By means of metabarcoding, microscopy and cytometry analyses, as well as measures of photosynthesis, we investigated the diversity, absolute abundance and photosynthetic rates of the phototrophic microbial communities. We identified 351 photosynthetic prokaryotic and eukaryotic operational taxonomic units (OTUs) across the five peatlands. We found that water availability and plant composition were important determinants of the composition and the structure of phototrophic microbial communities. Despite environmental shifts in community structure and composition, we showed that microbial C fixation rates remained similar along the latitudinal gradient. Our results further revealed that phototrophic microbes accounted for approximately 10% of peatland C uptake. Synthesis. Our findings show that phototrophic microbes are extremely diverse and abundant in peatlands. While species turnover with environmental conditions, microbial photosynthesis similarly contributed to peatland C uptake at all latitudes. We estimate that phototrophic microbes take up around 75 MT CO2 per year in northern peatlands. This amount roughly equals the magnitude of projected peatland C loss due to climate warming and highlights the importance of phototrophic microbes for the peatland C cycle.
  •  
10.
  • Singer, David, et al. (författare)
  • Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists
  • 2019
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 28:12, s. 3089-3100
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
bokkapitel (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lamentowicz, Mariusz (13)
Tuittila, Eeva-Stiin ... (8)
Dorrepaal, Ellen (6)
Mauquoy, Dmitri (5)
Le Roux, Gael (4)
De Vleeschouwer, Fra ... (4)
visa fler...
Karofeld, Edgar (4)
Robroek, Bjorn J. M. (4)
van Geel, Bas (4)
Vellak, Kai (3)
Mitchell, Edward A. ... (3)
Galka, Mariusz (3)
Rydin, Håkan, 1953- (3)
Finkelstein, Sarah A ... (3)
Bragazza, Luca (3)
Goia, Irina (3)
Harris, Lorna I. (3)
Kajukalo, Katarzyna (3)
Koronatova, Natalia ... (3)
Kosykh, Natalia P. (3)
Payne, Richard J. (3)
Singer, David (3)
Granath, Gustaf (3)
Sannel, A. Britta K. (3)
Natali, Susan M. (2)
Lara, Enrique (2)
Blaauw, Maarten (2)
Korhola, Atte (2)
Jones, Miriam C. (2)
Limpens, Juul (2)
Baltzer, Jennifer L. (2)
Bu, Zhao-Jun (2)
Caporn, Simon J. M. (2)
Galanina, Olga (2)
Ganeva, Anna (2)
Goncharova, Nadezhda (2)
Hajek, Michal (2)
Haraguchi, Akira (2)
Humphreys, Elyn (2)
Jirousek, Martin (2)
Lapshina, Elena (2)
Linkosalmi, Maiju (2)
Ma, Jin-Ze (2)
Mauritz, Marguerite (2)
Munir, Tariq M. (2)
Natcheva, Rayna (2)
Rice, Steven K. (2)
Robinson, Sean (2)
Rochefort, Line (2)
Waddington, James Mi ... (2)
visa färre...
Lärosäte
Umeå universitet (8)
Uppsala universitet (5)
Stockholms universitet (3)
Lunds universitet (3)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy