SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lantuit Hugues) "

Sökning: WFRF:(Lantuit Hugues)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biskaborn, Boris K., et al. (författare)
  • Permafrost is warming at a global scale
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.
  •  
2.
  • Callaghan, Terry, et al. (författare)
  • Multi-Decadal Changes in Tundra Environments and Ecosystems : Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF)
  • 2011
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 40:6, s. 705-716
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the responses of tundra systemsto global change has global implications. Most tundraregions lack sustained environmental monitoring and oneof the only ways to document multi-decadal change is toresample historic research sites. The International PolarYear (IPY) provided a unique opportunity for such researchthrough the Back to the Future (BTF) project (IPY project#512). This article synthesizes the results from 13 paperswithin this Ambio Special Issue. Abiotic changes includeglacial recession in the Altai Mountains, Russia; increasedsnow depth and hardness, permafrost warming, andincreased growing season length in sub-arctic Sweden;drying of ponds in Greenland; increased nutrient availabilityin Alaskan tundra ponds, and warming at mostlocations studied. Biotic changes ranged from relativelyminor plant community change at two sites in Greenland tomoderate change in the Yukon, and to dramatic increasesin shrub and tree density on Herschel Island, and in subarcticSweden. The population of geese tripled at one sitein northeast Greenland where biomass in non-grazed plotsdoubled. A model parameterized using results from a BTFstudy forecasts substantial declines in all snowbeds andincreases in shrub tundra on Niwot Ridge, Colorado overthe next century. In general, results support and provideimproved capacities for validating experimental manipulation,remote sensing, and modeling studies.
  •  
3.
  • Fritz, Michael, et al. (författare)
  • Eastern Beringia and beyond : Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada
  • 2012
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier BV. - 0031-0182 .- 1872-616X. ; 319, s. 28-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry. and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean delta O-18 of -29.1 parts per thousand); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial. and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until similar to 11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table. reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet. ocean, and permafrost that have existed since the Late Wisconsinan.
  •  
4.
  • Johansson, Margareta, et al. (författare)
  • Past and present permafrost temperatures in the Abisko area: redrilling of boreholes.
  • 2011
  • Ingår i: Ambio: a Journal of Human Environment. - : Springer Science and Business Media LLC. - 0044-7447. ; 40:6, s. 558-565
  • Tidskriftsartikel (refereegranskat)abstract
    • Monitoring of permafrost has been ongoing since 1978 in the Abisko area, northernmost Sweden, when measurements of active layer thickness started. In 1980, boreholes were drilled in three mires in the area to record permafrost temperatures. Recordings were made twice per year, and the last data were obtained in 2002. During the International Polar Year (2007-2008), new boreholes were drilled within the 'Back to the Future' (BTF) and 'Thermal State of Permafrost' (TSP) projects that enabled year-round temperature monitoring. Mean annual ground temperatures (MAGT) in the mires are close to 0 degrees C, ranging from -0.16 to -0.47 degrees C at 5 m depth. Data from the boreholes show increasing ground temperatures in the upper and lower part by 0.4 to 1 degree C between 1980 and 2002. At one mire, permafrost thickness has decreased from 15 m in 1980 to ca. 9 m in 2009, with an accelerating thawing trend during the last decade.
  •  
5.
  • Ramage, Justine L., et al. (författare)
  • Distribution of carbon and nitrogen along hillslopes in three valleys on Herschel Island, Yukon Territory, Canada
  • 2019
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier BV. - 0341-8162 .- 1872-6887. ; 178, s. 132-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermokarst results from the thawing of ice-rich permafrost and alters the biogeochemical cycling in the Arctic by reworking soil material and redistributing soil organic carbon (SOC) and total nitrogen (TN) along uplands, hillslopes, and lowlands. Understanding the impact of this redistribution is key to better estimating the storage of SOC in permafrost terrains. However, there are insufficient studies quantifying long-term impacts of thaw processes on the distribution of SOC and TN along hillslopes. We address this issue by providing estimates of SOC and TN stocks along the hillslopes of three valleys located on Herschel Island (Yukon, Canada), and by discussing the impact of hillslope thermokarst on the variability of SOC and TN stocks. We found that the average SOC and TN 0-100 cm stocks in the valleys were 26.4 +/- 8.9 kg C m(-2) and 2.1 +/- 0.6 kg N m(-2). We highlight the strong variability in the soils physical and geochemical properties within hillslope positions. High SOC stocks were found at the summits, essentially due to burial of organic matter by cryoturbation, and at the toeslopes due to impeded drainage which favored peat formation and SOC accumulation. The average carbon-to-nitrogen ratio in the valleys was 12.9, ranging from 9.7 to 18.9, and was significantly higher at the summits compared to the backslopes and footslopes (p < 0.05), suggesting a degradation of SOC downhill. Carbon and nitrogen contents and stocks were significantly lower on 16% of the sites that were previously affected by hillslope thermokarst (p < 0.05). Our results showed that lateral redistribution of SOC and TN due to hillslope thermokarst has a strong impact on the SOC storage in ice-rich permafrost terrains.
  •  
6.
  •  
7.
  • Speetjens, Niek Jesse, et al. (författare)
  • Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment
  • 2022
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 19:12, s. 3073-3097
  • Tidskriftsartikel (refereegranskat)abstract
    • Ongoing climate warming in the western Canadian Arctic is leading to thawing of permafrost soils and subsequent mobilization of its organic matter pool. Part of this mobilized terrestrial organic matter enters the aquatic system as dissolved organic matter (DOM) and is laterally transported from land to sea. Mobilized organic matter is an important source of nutrients for ecosystems, as it is available for microbial breakdown, and thus a source of greenhouse gases. We are beginning to understand spatial controls on the release of DOM as well as the quantities and fate of this material in large Arctic rivers. Yet, these processes remain systematically understudied in small, high-Arctic watersheds, despite the fact that these watersheds experience the strongest warming rates in comparison. Here, we sampled soil (active layer and permafrost) and water (porewater and stream water) from a small ice wedge polygon (IWP) catchment along the Yukon coast, Canada, during the summer of 2018. We assessed the organic carbon (OC) quantity (using dissolved (DOC) and particulate OC (POC) concentrations and soil OC content), quality (δ13C DOC, optical properties and source apportionment) and bioavailability (incubations; optical indices such as slope ratio, Sr; and humification index, HIX) along with stream water properties (temperature, T; pH; electrical conductivity, EC; and water isotopes). We classify and compare different landscape units and their soil horizons that differ in microtopography and hydrological connectivity, giving rise to differences in drainage capacity. Our results show that porewater DOC concentrations and yield reflect drainage patterns and waterlogged conditions in the watershed. DOC yield (in mg DOC g−1 soil OC) generally increases with depth but shows a large variability near the transition zone (around the permafrost table). Active-layer porewater DOC generally is more labile than permafrost DOC, due to various reasons (heterogeneity, presence of a paleo-active-layer and sampling strategies). Despite these differences, the very long transport times of porewater DOC indicate that substantial processing occurs in soils prior to release into streams. Within the stream, DOC strongly dominates over POC, illustrated by DOC/POC ratios around 50, yet storm events decrease that ratio to around 5. Source apportionment of stream DOC suggests a contribution of around 50 % from permafrost/deep-active-layer OC, which contrasts with patterns observed in large Arctic rivers (12 ± 8 %; Wild et al., 2019). Our 10 d monitoring period demonstrated temporal DOC patterns on multiple scales (i.e., diurnal patterns, storm events and longer-term trends), underlining the need for high-resolution long-term monitoring. First estimates of Black Creek annual DOC (8.2 ± 6.4 t DOC yr−1) and POC (0.21 ± 0.20 t yr−1) export allowed us to make a rough upscaling towards the entire Yukon Coastal Plain (34.51 ± 2.7 kt DOC yr−1 and 8.93 ± 8.5 kt POC yr−1). Rising Arctic temperatures, increases in runoff, soil organic matter (OM) leaching, permafrost thawing and primary production are likely to increase the net lateral OC flux. Consequently, altered lateral fluxes may have strong impacts on Arctic aquatic ecosystems and Arctic carbon cycling.
  •  
8.
  • Speetjens, Niek Jesse, et al. (författare)
  • The pan-Arctic catchment database (ARCADE)
  • 2023
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 15:2, s. 541-554
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is rapidly changing. Outside the Arctic, large-sample catchment databases have transformed catchment science from focusing on local case studies to more systematic studies of watershed functioning. Here we present an integrated pan-ARctic CAtchments summary DatabasE (ARCADE) of > 40 000 catchments that drain into the Arctic Ocean and range in size from 1 to 3.1 × 106 km2. These watersheds, delineated at a 90 m resolution, are provided with 103 geospatial, environmental, climatic, and physiographic catchment properties. ARCADE is the first aggregated database of pan-Arctic river catchments that also includes numerous small watersheds at a high resolution. These small catchments are experiencing the greatest climatic warming while also storing large quantities of soil carbon in landscapes that are especially prone to degradation of permafrost (i.e., ice wedge polygon terrain) and associated hydrological regime shifts. ARCADE is a key step toward monitoring the pan-Arctic across scales and is publicly available: https://doi.org/10.34894/U9HSPV (Speetjens et al., 2022).
  •  
9.
  • Tanski, George, et al. (författare)
  • The Permafrost Young Researchers Network (PYRN) is getting older : The past, present, and future of our evolving community
  • 2019
  • Ingår i: Polar Record. - 0032-2474 .- 1475-3057. ; 55:4, s. 216-219
  • Tidskriftsartikel (refereegranskat)abstract
    • A lasting legacy of the International Polar Year (IPY) 2007-2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN's development since 2005 and the IPY's role, (2) the first 2015 PYRN census and survey results, and (3) PYRN's future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN's successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.
  •  
10.
  • Wagner, Julia, et al. (författare)
  • High resolution mapping shows differences in soil carbon and nitrogen stocks in areas of varying landscape history in Canadian lowland tundra
  • 2023
  • Ingår i: Geoderma. - 0016-7061 .- 1872-6259. ; 438
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in Arctic coastal polygonal tundra is vulnerable to climate change, especially in soils with occurrence of large amounts of ground ice. Pan-arctic studies of mapping SOC exist, yet they fail to describe the high spatial variability of SOC storage in permafrost landscapes. An important factor is the landscape history which determines landform development and consequently the spatial variability of SOC. Our aim was to map SOC stocks, and which environmental variables that determine SOC, in two adjacent coastal areas along Canadian Beaufort Sea coast with different glacial history. We used the machine learning technique random forest and environmental variables to map the spatial distribution of SOC stocks down to 1 m depth at a spatial resolution of 2 m for depth increments of 0-5, 5-15, 15-30, 30-60 and 60-100 cm. The results show that the two study areas had large differences in SOC stocks in the depth 60-100 cm due to high amounts of ground ice in one of the study areas. There are also differences in variable importance of the explanatory variables between the two areas. The area low in ground ice content had with 66.6 kg C/m(-2) more stored SOC than the area rich in ground ice content with 40.0 kg C/m(-2). However, this SOC stock could be potentially more vulnerable to climate change if ground ice melts and the ground subsides. The average N stock of the area low in ground ice is 3.77 kg m(-2) and of the area rich in ground ice is 3.83 kg m(-2). These findings support that there is a strong correlation between ground ice and SOC, with less SOC in ice-rich layers on a small scale. In addition to small scale studies of SOC mapping, detailed maps of ground ice content and distribution are needed for a validation of large-scale quantifications of SOC stocks and transferability of models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (10)
annan publikation (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Vonk, Jorien E. (4)
Johansson, Margareta (4)
Hugelius, Gustaf, 19 ... (3)
Hugelius, Gustaf (2)
Keuper, Frida (2)
Lodi, Rachele (2)
visa fler...
Wagner, Julia (2)
Åkerman, Jonas (2)
Richter, Andreas (2)
Christensen, Torben (2)
Olsson, Håkan (1)
Christiansen, Hanne ... (1)
Johnstone, Jill F. (1)
Strauss, Jens (1)
A'Campo, Willeke (1)
Bartsch, Annett (1)
Durstewitz, Luca (1)
Noetzli, Jeannette (1)
Smith, Sharon L. (1)
Hedenås, Henrik (1)
Emanuelsson, Urban (1)
Matthes, Heidrun (1)
O'Regan, Matt (1)
Eriksson, Håkan (1)
Vasiliev, Alexander (1)
Ingeman-Nielsen, Tho ... (1)
Gumbricht, Thomas (1)
Lin, David (1)
Meiklejohn, Ian (1)
Romanovsky, Vladimir ... (1)
Hik, David S. (1)
Boike, Julia (1)
Siewert, Matthias Be ... (1)
Pohjola, Veijo A, 19 ... (1)
Schneider, Andrea (1)
Knoblauch, Christian (1)
Berghuijs, Wouter R. (1)
Bergstedt, Johan (1)
Tamstorf, Mikkel (1)
Danby, Ryan K. (1)
Kholodov, Alexander (1)
Biskaborn, Boris K. (1)
Vieira, Gonçalo (1)
Streletskiy, Dmitry ... (1)
Schoeneich, Philippe (1)
Lewkowicz, Antoni G. (1)
Sannel, A. Britta K. (1)
Allard, Michel (1)
Cable, William L. (1)
Delaloye, Reynald (1)
visa färre...
Lärosäte
Stockholms universitet (10)
Lunds universitet (4)
Högskolan Kristianstad (1)
Uppsala universitet (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Lantbruksvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy