SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linz Hendrik) "

Sökning: WFRF:(Linz Hendrik)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
2.
  • Beuther, Henrik, et al. (författare)
  • Gravity and Rotation Drag the Magnetic Field in High-mass Star Formation
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 904:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of hot stars out of the cold interstellar medium lies at the heart of astrophysical research. Understanding the importance of magnetic fields during star formation remains a major challenge. With the advent of the Atacama Large Millimeter Array, the potential to study magnetic fields by polarization observations has tremendously progressed. However, the major question remains how much magnetic fields shape the star formation process or whether gravity is largely dominating. Here, we show that for the high-mass star-forming region G327.3 the magnetic field morphology appears to be dominantly shaped by the gravitational contraction of the central massive gas core where the star formation proceeds. We find that in the outer parts of the region, the magnetic field is directed toward the gravitational center of the region. Filamentary structures feeding the central core exhibit U-shaped magnetic field morphologies directed toward the gravitational center as well, again showing the gravitational drag toward the center. The inner part then shows rotational signatures, potentially associated with an embedded disk, and there the magnetic field morphology appears to be rotationally dominated. Hence, our results demonstrate that for this region gravity and rotation are dominating the dynamics and shaping the magnetic field morphology.
  •  
3.
  • Gurvits, Leonid I., et al. (författare)
  • THEZA: TeraHertz Exploration and Zooming-in for Astrophysics
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 559-594
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above similar to 300 GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Base-line Interferometry) and mm- and sub-mm astrophysical studies with "single dish" instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) - the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.
  •  
4.
  • Gurvits,, et al. (författare)
  • The science case and challenges of space-borne sub-millimeter interferometry
  • 2022
  • Ingår i: Acta Astronautica. - : Elsevier BV. - 0094-5765. ; 196, s. 314-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10???20 microarcseconds (0.05???0.1 nanoradian). Further developments towards at least an order of magnitude ???sharper???values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.
  •  
5.
  • Quanz, Sascha P., et al. (författare)
  • Atmospheric characterization of terrestrial exoplanets in the mid-infrared : biosignatures, habitability, and diversity
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 1197-1221
  • Tidskriftsartikel (refereegranskat)abstract
    • Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals. In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we argue that a large space-based mission designed to detect and investigate thermal emission spectra of terrestrial exoplanets in the mid-infrared wavelength range provides unique scientific potential to address these goals and surpasses the capabilities of other approaches. While NASA might be focusing on large missions that aim to detect terrestrial planets in reflected light, ESA has the opportunity to take leadership and spearhead the development of a large mid-infrared exoplanet mission within the scope of the “Voyage 2050” long-term plan establishing Europe at the forefront of exoplanet science for decades to come. Given the ambitious science goals of such a mission, additional international partners might be interested in participating and contributing to a roadmap that, in the long run, leads to a successful implementation. A new, dedicated development program funded by ESA to help reduce development and implementation cost and further push some of the required key technologies would be a first important step in this direction. Ultimately, a large mid-infrared exoplanet imaging mission will be needed to help answer one of humankind’s most fundamental questions: “How unique is our Earth?” 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy