SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maciel Pedro) "

Search: WFRF:(Maciel Pedro)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lopes, Fatima, et al. (author)
  • Identification of novel genetic causes of Rett syndrome-like phenotypes
  • 2016
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 53:3, s. 190-199
  • Journal article (peer-reviewed)abstract
    • Background The aim of this work was to identify new genetic causes of Rett-like phenotypes using array comparative genomic hybridisation and a whole exome sequencing approach. Methods and results We studied a cohort of 19 Portuguese patients (16 girls, 3 boys) with a clinical presentation significantly overlapping Rett syndrome (RTT). Genetic analysis included filtering of the single nucleotide variants and indels with preference for de novo, homozygous/compound heterozygous, or maternally inherited X linked variants. Examination by MRI and muscle biopsies was also performed. Pathogenic genomic imbalances were found in two patients (10.5%): an 18q21.2 deletion encompassing four exons of the TCF4 gene and a mosaic UPD of chromosome 3. Variants in genes previously implicated in neurodevelopmental disorders (NDD) were identified in six patients (32%): de novo variants in EEF1A2, STXBP1 and ZNF238 were found in three patients, maternally inherited X linked variants in SLC35A2, ZFX and SHROOM4 were detected in two male patients and one homozygous variant in EIF2B2 was detected in one patient. Variants were also detected in five novel NDD candidate genes (26%): we identified de novo variants in the RHOBTB2, SMARCA1 and GABBR2 genes; a homozygous variant in EIF4G1; compound heterozygous variant in HTT. Conclusions Network analysis reveals that these genes interact by means of protein interactions with each other and with the known RTT genes. These findings expand the phenotypical spectrum of previously known NDD genes to encompass RTT-like clinical presentations and identify new candidate genes for RTT-like phenotypes.
  •  
2.
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Brimicombe, Chloe, et al. (author)
  • Wet Bulb Globe Temperature : Indicating Extreme Heat Risk on a Global Grid
  • 2023
  • In: GeoHealth. - : American Geophysical Union (AGU). - 2471-1403. ; 7:2
  • Journal article (peer-reviewed)abstract
    • The Wet Bulb Globe Temperature (WBGT) is an international standard heat index used by the health, industrial, sports, and climate sectors to assess thermal comfort during heat extremes. Observations of its components, the globe and the wet bulb temperature (WBT), are however sparse. Therefore WBGT is difficult to derive, making it common to rely on approximations, such as the ones developed by Liljegren et al. and by the American College of Sports Medicine (WBGT(ACSM87)). In this study, a global data set is created by implementing an updated WBGT method using ECMWF ERA5 gridded meteorological variables and is evaluated against existing WBGT methods. The new method, WBGT(Brimicombe), uses globe temperature calculated using mean radiant temperature and is found to be accurate in comparison to WBGT(Liljegren) across three heatwave case studies. In addition, it is found that WBGT(ACSM87) is not an adequate approximation of WBGT. Our new method is a candidate for a global forecasting early warning system.
  •  
5.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
6.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
7.
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view