SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mandava Chandra Sekhar 1978 ) "

Sökning: WFRF:(Mandava Chandra Sekhar 1978 )

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albers, Suki, et al. (författare)
  • Repurposing tRNAs for nonsense suppression
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the T Psi C-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 angstrom resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon. Here, the authors report de novo design, optimization and characterization of tRNAs that decode UGA stop codons in E. coli. The structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon suggests that distinct A-site ligands (tRNAs versus release factors) induce distinct conformation of the stop codon within the mRNA in the decoding center.
  •  
2.
  • Chan, Sherwin, et al. (författare)
  • Regulation of PfEMP1-VAR2CSA translation by a Plasmodium translation-enhancing factor
  • 2017
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 2:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Pregnancy-associated malaria commonly involves the binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate A (CSA) through the PfEMP1-VAR2CSA protein. VAR2CSA is translationally repressed by an upstream open reading frame. In this study, we report that the P. falciparum translation enhancing factor (PTEF) relieves upstream open reading frame repression and thereby facilitates VAR2CSA translation. VAR2CSA protein levels in var2csa-transcribing parasites are dependent on the expression level of PTEF, and the alleviation of upstream open reading frame repression requires the proteolytic processing of PTEF by PfCalpain. Cleavage generates a C-terminal domain that contains a sterile-alpha-motif-like domain. The C-terminal domain is permissive to cytoplasmic shuttling and interacts with ribosomes to facilitate translational derepression of the var2csa coding sequence. It also enhances translation in a heterologous translation system and thus represents the first non-canonical translation enhancing factor to be found in a protozoan. Our results implicate PTEF in regulating placental CSA binding of infected erythrocytes.
  •  
3.
  • Degiacomi, Giulia, et al. (författare)
  • Micrococcin P1-A bactericidal thiopeptide active against Mycobacterium tuberculosis
  • 2016
  • Ingår i: Tuberculosis. - : Elsevier BV. - 1472-9792 .- 1873-281X. ; 100, s. 95-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of proper treatment for serious infectious diseases due to the emergence of multidrug resistance reinforces the need for the discovery of novel antibiotics. This is particularly true for tuberculosis (TB) for which 3.7% of new cases and 20% of previously treated cases are estimated to be caused by multi-drug resistant strains. In addition, in the case of TB, which claimed 1.5 million lives in 2014, the treatment of the least complicated, drug sensitive cases is lengthy and disagreeable. Therefore, new drugs with novel targets are urgently needed to control resistant Mycobacterium tuberculosis strains. In this manuscript we report the characterization of the thiopeptide micrococcin P1 as an anti-tubercular agent. Our biochemical experiments show that this antibiotic inhibits the elongation step of protein synthesis in mycobacteria. We have further identified micrococcin resistant mutations in the ribosomal protein L11 (RplK); the mutations were located in the proline loop at the N-terminus. Reintroduction of the mutations into a clean genetic background, confirmed that they conferred resistance, while introduction of the wild type RplK allele into resistant strains re-established sensitivity. We also identified a mutation in the 23S rRNA gene. These data, in good agreement with previous structural studies suggest that also in M. tuberculosis micrococcin P1 functions by binding to the cleft between the 23S rRNA and the L11 protein loop, thus interfering with the binding of elongation factors Tu and G (EF-Tu and EF-G) and inhibiting protein translocation.
  •  
4.
  • Fislage, Marcus, et al. (författare)
  • Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-Tu(H84A)
  • 2018
  • Ingår i: Nucleic Acids Research. - : OXFORD UNIV PRESS. - 0305-1048 .- 1362-4962. ; 46:11, s. 5861-5874
  • Tidskriftsartikel (refereegranskat)abstract
    • The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of themonitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.
  •  
5.
  • Ge, Xueliang, et al. (författare)
  • Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:18, s. 4649-4654
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between the ribosomal-stalk protein L7/12 (L12) and initiation factor 2 (IF2) is essential for rapid subunit association, but the underlying mechanism is unknown. Here, we have characterized the L12–IF2 interaction on Escherichia coli ribosomes using site-directed mutagenesis, fast kinetics, and molecular dynamics (MD) simulations. Fifteen individual point mutations were introduced into the C-terminal domain of L12 (L12-CTD) at helices 4 and 5, which constitute the common interaction site for translational GTPases. In parallel, 15 point mutations were also introduced into IF2 between the G4 and G5 motifs, which we hypothesized as the potential L12 interaction sites. The L12 and IF2 mutants were tested in ribosomal subunit association assay in a stopped-flow instrument. Those amino acids that caused defective subunit association upon substitution were identified as the molecular determinants of L12–IF2 interaction. Further, MD simulations of IF2 docked onto the L12-CTD pinpointed the exact interacting partners—all of which were positively charged on L12 and negatively charged on IF2, connected by salt bridges. Lastly, we tested two pairs of charge-reversed mutants of L12 and IF2, which significantly restored the yield and the rate of formation of the 70S initiation complex. We conclude that complementary charge-based interaction between L12-CTD and IF2 is the key for fast subunit association. Considering the homology of the G domain, similar mechanisms may apply for L12 interactions with other translational GTPases.
  •  
6.
  • Holm, Mikael, 1984-, et al. (författare)
  • The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation
  • 2019
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Applying pre-steady state kinetics to an Escherichia-coli-based reconstituted translation system, we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading-based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants toward TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.
  •  
7.
  • Kim, Changil, et al. (författare)
  • Optimization of a fluorescent-mRNA based real-time assay for precise kinetic measurements of ribosomal translocation
  • 2021
  • Ingår i: RNA Biology. - : Informa UK Limited. - 1547-6286 .- 1555-8584. ; 18:12, s. 2363-2375
  • Tidskriftsartikel (refereegranskat)abstract
    • Kinetic characterization of ribosomal translocation is important for understanding the mechanism of elongation in protein synthesis. Here we have optimized a popular fluorescent-mRNA based translocation assay conducted in stopped-flow, by calibrating it with the functional tripeptide formation assay in quench-flow. We found that a fluorescently labelled mRNA, ten bases long from position +1 (mRNA+10), is best suited for both assays as it forms tripeptide at a fast rate equivalent to the longer mRNAs, and yet produces a large fluorescence change upon mRNA movement. Next, we compared the commonly used peptidyl tRNA analog, N-acetyl-Phe-tRNAPhe, with the natural dipeptidyl fMet-Phe-tRNAPhe in the stopped-flow assay. This analog translocates about two times slower than the natural dipeptidyl tRNA and produces biphasic kinetics. The rates reduce further at lower temperatures and with higher Mg2+ concentration, but improve with higher elongation factor G (EF-G) concentration, which increase both rate and amplitude of the fast phase significantly. In summary, we present here an improved real time assay for monitoring mRNA-translocation with the natural- and an N-Ac-analog of dipeptidyl tRNA.
  •  
8.
  • Mandava, Chandra Sekhar, 1978-, et al. (författare)
  • Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G
  • 2012
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 40:5, s. 2054-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription-translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.
  •  
9.
  • Mandava, Chandra Sekhar, 1978- (författare)
  • Ribosomal Stalk Protein L12 : Structure, Function and Application
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ribosomal stalk proteins are known to play important role in protein synthesis. The ‘stalk’, an extended structure on the large subunit of the ribosome is composed mainly of two to three dimers of L12 and one L10 protein, which forms the base of the stalk. In E. coli, four copies of L12 molecules exist as dimer of dimers forming the pentameric L8 complex together with L10. This thesis is a collection of four interlinked studies on the structure, function and application of the ribosomal stalk protein L12. In the first study, we have mapped the interaction sites of the four major translation GTPase factors (IF2, EF-Tu, EF-G & RF3) on L12 molecule using heteronuclear NMR spectroscopy. Surprisingly, all these factors produced an overlapping interaction map spanning two α-helices on the C terminal domain of L12, thereby suggesting a general nature of the interaction between L12 and the GTPase factors. L12 is known to stimulate GTPase activity of the elongation factors EF-Tu and EF-G. Here, we have clarified the role of L12 in IF2 mediated initiation of protein synthesis. Our data suggest that rapid subunit association requires a specific interaction between the L12 protein on the 50S and IF2·GTP on the 30S preinitiation complex. We have also shown that L12 is not a GAP for IF2 and GTP hydrolysis triggers IF2 release from the 70S initiation complex. The next question we have addressed is why multiple copies of L12 dimer are needed on the ribosome. For this purpose, we created a pure E. coli strain JE105, where the terminal part of rplJ gene coding for the binding site of one L12 dimer on protein L10 was deleted in the chromosomal locus. Using ribosomes with single L12 dimer we have observed that the rate of the initiation and elongation involving IF2 and EF-G gets most compromised, which in turn decreases the growth rate of the bacteria.  This study also indicates that L12 can interact with different GTPase factors in a specialized manner. Lastly, we have developed an application making advantage of the multiple L12 dimers on the ribosome. By inserting a (His)6-tag at the C-terminus of the L12 protein we have created a novel E. coli strain (JE28), where all ribosomes are tetra-(His)6-tagged. Further, we have developed a single step method for purification of the active (His)6-tagged ribosomes from JE28.
  •  
10.
  • Parajuli, Narayan Prasad, 1989-, et al. (författare)
  • Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy