SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marabita F) "

Sökning: WFRF:(Marabita F)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Menden, MP, et al. (författare)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
2.
  • Kular, L, et al. (författare)
  • DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2397-
  • Tidskriftsartikel (refereegranskat)abstract
    • The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10−8, odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.
  •  
3.
  •  
4.
  • Gomez-Cabrero, D, et al. (författare)
  • STATegra, a comprehensive multi-omics dataset of B-cell differentiation in mouse
  • 2019
  • Ingår i: Scientific data. - : Springer Science and Business Media LLC. - 2052-4463. ; 6:1, s. 256-
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-omics approaches use a diversity of high-throughput technologies to profile the different molecular layers of living cells. Ideally, the integration of this information should result in comprehensive systems models of cellular physiology and regulation. However, most multi-omics projects still include a limited number of molecular assays and there have been very few multi-omic studies that evaluate dynamic processes such as cellular growth, development and adaptation. Hence, we lack formal analysis methods and comprehensive multi-omics datasets that can be leveraged to develop true multi-layered models for dynamic cellular systems. Here we present the STATegra multi-omics dataset that combines measurements from up to 10 different omics technologies applied to the same biological system, namely the well-studied mouse pre-B-cell differentiation. STATegra includes high-throughput measurements of chromatin structure, gene expression, proteomics and metabolomics, and it is complemented with single-cell data. To our knowledge, the STATegra collection is the most diverse multi-omics dataset describing a dynamic biological system.
  •  
5.
  •  
6.
  •  
7.
  • Theodoropoulou, E, et al. (författare)
  • Different epigenetic clocks reflect distinct pathophysiological features of multiple sclerosis
  • 2019
  • Ingår i: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 11:12, s. 1429-1439
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Accumulating evidence links epigenetic age to diseases and age-related conditions, but little is known about its association with multiple sclerosis (MS). Materials & methods: We estimated epigenetic age acceleration measures using DNA methylation from blood or sorted cells of MS patients and controls. Results: In blood, sex (p = 4.39E-05) and MS (p = 2.99E-03) explained the variation in age acceleration, and isolated blood cell types showed different epigenetic age. Intrinsic epigenetic age acceleration and extrinsic epigenetic age acceleration were only associated with sex (p = 2.52E-03 and p = 1.58E-04, respectively), while PhenoAge Acceleration displayed positive association with MS (p = 3.40E-02). Conclusion: Different age acceleration measures are distinctly influenced by phenotypic factors, and they might measure separate pathophysiological aspects of MS. Data deposition: DNA methylation data can be accessed at Gene Expression Omnibus database under accession number GSE35069, GSE43976, GSE106648, GSE130029, GSE130030.
  •  
8.
  •  
9.
  •  
10.
  • de Winter, J M, et al. (författare)
  • KBTBD13 is an actin-binding protein that modulates muscle kinetics
  • 2020
  • Ingår i: Journal of Clinical Investigation. - : Stanford University Press. - 0021-9738 .- 1558-8238. ; 130:2, s. 754-767
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13(R408c)-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy