SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marti Renom M. A.) "

Sökning: WFRF:(Marti Renom M. A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mishra, A., et al. (författare)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  • Rajewsky, N., et al. (författare)
  • LifeTime and improving European healthcare through cell-based interceptive medicine
  • 2020
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7834, s. 377-386
  • Tidskriftsartikel (refereegranskat)abstract
    • LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
  •  
3.
  • Muino, E., et al. (författare)
  • RP11-362K2.2:RP11-767I20.1 Genetic Variation Is Associated with Post-Reperfusion Therapy Parenchymal Hematoma. A GWAS Meta-Analysis
  • 2021
  • Ingår i: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Stroke is one of the most common causes of death and disability. Reperfusion therapies are the only treatment available during the acute phase of stroke. Due to recent clinical trials, these therapies may increase their frequency of use by extending the time-window administration, which may lead to an increase in complications such as hemorrhagic transformation, with parenchymal hematoma (PH) being the more severe subtype, associated with higher mortality and disability rates. Our aim was to find genetic risk factors associated with PH, as that could provide molecular targets/pathways for their prevention/treatment and study its genetic correlations to find traits sharing genetic background. We performed a GWAS and meta-analysis, following standard quality controls and association analysis (fastGWAS), adjusting age, NIHSS, and principal components. FUMA was used to annotate, prioritize, visualize, and interpret the meta-analysis results. The total number of patients in the meta-analysis was 2034 (216 cases and 1818 controls). We found rs79770152 having a genome-wide significant association (beta 0.09, p-value 3.90 x 10(-8)) located in the RP11-362K2.2:RP11-767I20.1 gene and a suggestive variant (rs13297983: beta 0.07, p-value 6.10 x 10(-8)) located in PCSK5 associated with PH occurrence. The genetic correlation showed a shared genetic background of PH with Alzheimer's disease and white matter hyperintensities. In addition, genes containing the ten most significant associations have been related to aggregated amyloid-beta, tau protein, white matter microstructure, inflammation, and matrix metalloproteinases.
  •  
4.
  •  
5.
  • Miguel-Escalada, Irene, et al. (författare)
  • Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:7, s. 1137-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy