SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Massironi M.) "

Sökning: WFRF:(Massironi M.)

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gicquel, A., et al. (författare)
  • Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere of comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S178-S185
  • Tidskriftsartikel (refereegranskat)abstract
    • Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov-Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) cameras since 2014 March using both the wide-angle camera and the narrow-angle camera (NAC). We use images from the NAC camera to study a bright outburst observed in the Southern hemisphere on 2015 July 29. The high spatial resolution of the NAC is needed to localize the source point of the outburst on the surface of the nucleus. The heliocentric distance is 1.25 au and the spacecraft-comet distance is 186 km. Aiming to better understand the physics that led to the outgassing, we used the Direct Simulation Monte Carlo method to study the gas flow close to the nucleus and the dust trajectories. The goal is to understand the mechanisms producing the outburst. We reproduce the opening angle of the outburst in the model and constrain the outgassing ratio between the outburst source and the local region. The outburst is in fact a combination of both gas and dust, in which the active surface is approximately 10 times more active than the average rate found in the surrounding areas. We need a number of dust particles 7.83 x 10(11) to 6.90 x 10(15) (radius 1.97-185 mu m), which correspond to a mass of dust (220-21) x 10(3) kg.
  •  
2.
  • Pajola, M., et al. (författare)
  • The Agilkia boulders/pebbles size-frequency distributions : OSIRIS and ROLIS joint observations of 67P surface
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S242-S252
  • Tidskriftsartikel (refereegranskat)abstract
    • By using the images acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) and ROLIS (ROsetta Lander Imaging System) cameras, we derive the size-frequency distribution (SFD) of cometary pebbles and boulders covering the size range 0.05-30.0 m on the Agilkia landing site. The global SFD measured on OSIRIS images, reflects the different properties of the multiple morphological units present on Agilkia, combined with selection effects related to lifting, transport and redeposition. Contrarily, the different ROLIS SFD derived on the smooth and rough units may be related to their different regolith thickness present on Agilkia. In the thicker, smoother layer, ROLIS mainly measures the SFD of the airfall population which almost completely obliterates the signature of underlying boulders up to a size of the order of 1 m. This is well matched by the power-law index derived analysing coma particles identified by the grain analyser Grain Impact Analyser and Dust Accumulator. This result confirms the important blanketing dynamism of Agilkia. The steeper SFD observed in rough terrains from 0.4 to 2 m could point out intrinsic differences between northern and southern dust size distributions, or it may suggest that the underlying boulders 'peek through' the thinner airfall layer in the rough terrain, thereby producing the observed excess in the decimetre size range. Eventually, the OSIRIS SFD performed on the Philae landing unit may be due to water sublimation from a static population of boulders, affecting smaller boulders before the bigger ones, thus shallowing the original SFD.
  •  
3.
  • Pajola, M., et al. (författare)
  • The pebbles/boulders size distributions on Sais : Rosetta's final landing site on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:Suppl. 2, s. S636-S645
  • Tidskriftsartikel (refereegranskat)abstract
    • By using the imagery acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System Wide-Angle Camera (OSIRISWAC), we prepare a high-resolution morphological map of the Rosetta Sais final landing site, characterized by an outcropping consolidated terrain unit, a coarse boulder deposit and a fine particle deposit. Thanks to the 0.014 m resolution images, we derive the pebbles/boulders size-frequency distribution (SFD) of the area in the size range of 0.07-0.70 m. Sais' SFD is best fitted with a two-segment differential power law: the first segment is in the range 0.07-0.26 m, with an index of -1.7 ± 0.1, while the second is in the range 0.26-0.50 m, with an index of -4.2 +0.4/-0.8. The 'knee' of the SFD, located at 0.26 m, is evident both in the coarse and fine deposits. When compared to the Agilkia Rosetta Lander Imaging System images, Sais surface is almost entirely free of the ubiquitous, cm-sized debris blanket observed by Philae. None the less, a similar SFD behaviour of Agilkia, with a steeper distribution above ~0.3 m, and a flatter trend below that, is observed. The activity evolution of 67P along its orbit provides a coherent scenario of how these deposits were formed. Indeed, different lift pressure values occurring on the two locations and at different heliocentric distances explain the presence of the cm-sized debris blanket on Agilkia observed at 3.0 au inbound. Contrarily, Sais activity after 2.1 au outbound has almost completely eroded the fine deposits fallen during perihelion, resulting in an almost dust-free surface observed at 3.8 au.
  •  
4.
  • Barucci, M. A., et al. (författare)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
5.
  • El-Maarry, M. R., et al. (författare)
  • Fractures on comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:13, s. 5170-5178
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard the Rosetta spacecraft currently orbiting comet 67P/Churyumov-Gerasimenko has yielded unprecedented views of a comet's nucleus. We present here the first ever observations of meter-scale fractures on the surface of a comet. Some of these fractures form polygonal networks. We present an initial assessment of their morphology, topology, and regional distribution. Fractures are ubiquitous on the surface of the comet's nucleus. Furthermore, they occur in various settings and show different topologies suggesting numerous formation mechanisms, which include thermal insulation weathering, orbital-induced stresses, and possibly seasonal thermal contraction. However, we conclude that thermal insolation weathering is responsible for creating most of the observed fractures based on their morphology and setting in addition to thermal models that indicate diurnal temperature ranges exceeding 200K and thermal gradients of similar to 15K/min at perihelion are possible. Finally, we suggest that fractures could be a facilitator in surface evolution and long-term erosion.
  •  
6.
  • Fornasier, S., et al. (författare)
  • Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6319, s. 1566-1570
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
  •  
7.
  • Fornasier, S., et al. (författare)
  • The highly active Anhur-Bes regions in the 67P/Churyumov-Gerasimenko comet : results from OSIRIS/ROSETTA observations
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S93-S107
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since 2015 March. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rates, thus exposing the sub-surface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur-Bes boundary during/after the perihelion passage, close to the area where exposed CO2 and H2O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers.
  •  
8.
  • Gicquel, A., et al. (författare)
  • Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on board Rosetta
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 462, s. S57-S66
  • Tidskriftsartikel (refereegranskat)abstract
    • Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance R-h = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this paper was that through the sublimation of the aggregates of dirty grains (radius a between 5 and 50 mu m) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data, we needed to inject a number of aggregates between 8.5 x 10(13) and 8.5 x 10(10) for a = 5 and 50 mu m, respectively, or an initial mass of H2O ice around 22 kg.
  •  
9.
  • Hu, X., et al. (författare)
  • Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 604
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Dust deposits or dust cover are a prevalent morphology in the northern hemi-nucleus of comet 67P /Churyumov-Gerasimenko (67P). The evolution of the dust deposits was captured by the OSIRIS camera system onboard the Rosetta spacecraft having escorted the comet for over two years. The observations shed light on the fundamental role of cometary activity in shaping and transforming the surface morphology.Aims: We aim to present OSIRIS observations of surface changes over the dust deposits before and after perihelion. The distribution of changes and a timeline of their occurrence are provided. We perform a data analysis to quantify the surface changes and investigate their correlation to water activity from the dust deposits. We further discuss how the results of our investigation are related to other findings from the Rosetta mission.Methods: Surface changes were detected via systematic comparison of images, and quantified using shape-from-shading technique. Thermal models were applied to estimate the erosion of water ice in response to the increasing insolation over the areas where surface changes occurred. Modeling results were used for the interpretation of the observed surface changes.Results: Surface changes discussed here were concentrated at mid-latitudes, between about 20 degrees N and 40 degrees N, marking a global transition from the dust-covered to rugged terrains. The changes were distributed in open areas exposed to ample solar illumination and likely subject to enhanced surface erosion before perihelion. The occurrence of changes followed the southward migration of the sub-solar point across the latitudes of their distribution. The erosion at locations of most changes was at least about 0 : 5 m, but most likely did not exceed several meters. The erosive features before perihelion had given way to a fresh, smooth cover of dust deposits after perihelion, suggesting that the dust deposits had been globally restored by at least about 1 m with ejecta from the intensely illuminated southern hemi-nucleus around perihelion, when the north was inactive during polar night.Conclusions: The erosion and restoration of the northern dust deposits are morphological expressions of seasonality on 67P. Based on observations and thermal modeling results, it is inferred that the dust deposits contained a few percent of water ice in mass on average. Local inhomogeneity in water abundance at spatial scales below tens of meters is likely. We suspect that dust ejected from the deposits may not have escaped the comet in bulk. That is, at least half of the ejected mass was afloat in the inner-coma or /and redeposited over other areas of the nucleus.
  •  
10.
  • Pajola, M., et al. (författare)
  • The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse
  • 2017
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Outbursts occur commonly on comets(1) with different frequencies and scales(2,3). Despite multiple observations suggesting various triggering processes(4,5), the driving mechanism of such outbursts is still poorly understood. Landslides have been invoked(6) to explain some outbursts on comet 103P/Hartley (2), although the process required a pre-existing dust layer on the verge of failure. The Rosetta mission observed several outbursts from its target comet 67P/ChuryumovGerasimenko, which were attributed to dust generated by the crumbling of materials from collapsing cliffs(7,8). However, none of the aforementioned works included definitive evidence that landslides occur on comets. Amongst the many features observed by Rosetta on the nucleus of the comet, one peculiar fracture, 70 m long and 1 m wide, was identified on images obtained in September 2014 at the edge of a cliff named Aswan(9). On 10 July 2015, the Rosetta Navigation Camera captured a large plume of dust that could be traced back to an area encompassing the Aswan escarpment(7). Five days later, the OSIRIS camera observed a fresh, sharp and bright edge on the Aswan cliff. Here we report the first unambiguous link between an outburst and a cliff collapse on a comet. We establish a new dust-plume formation mechanism that does not necessarily require the breakup of pressurized crust or the presence of supervolatile material, as suggested by previous studies(7). Moreover, the collapse revealed the fresh icy interior of the comet, which is characterized by an albedo > 0.4, and provided the opportunity to study how the crumbling wall settled down to form a new talus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy