SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meco C) "

Sökning: WFRF:(Meco C)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bousquet, J, et al. (författare)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • Ingår i: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
4.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Geser, F, et al. (författare)
  • The European Multiple System Atrophy-Study Group (EMSA-SG)
  • 2005
  • Ingår i: Journal of Neural Transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 112:12, s. 1677-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction. The European Multiple System Atrophy-Study Group (EMSA-SG) is an academic network comprising 23 centers across Europe and Israel that has constituted itself already in January 1999. This international forum of established experts under the guidance of the University Hospital of Innsbruck as coordinating center is supported by the 5th framework program of the European Union since March 2001 (QLK6-CT-2000-00661). Objectives. Primary goals of the network include (1) a central Registry for European multiple system atrophy (MSA) patients, (2) a decentralized DNA Bank, (3) the development and validation of the novel Unified MSA Rating Scale (UMSARS), (4) the conduction of a Natural History Study (NHS), and (5) the planning or implementation of interventional therapeutic trials. Methods. The EMSA-SG Registry is a computerized data bank localized at the coordinating centre in Innsbruck collecting diagnostic and therapeutic data of MSA patients. Blood samples of patients and controls are recruited into the DNA Bank. The UMSARS is a novel specific rating instrument that has been developed and validated by the EMSA-SG. The NHS comprises assessments of basic anthropometric data as well as a range of scales including the UMSARS, Unified Parkinson's Disease Rating Scale (UPDRS), measures of global disability, Red Flag list, MMSE (Mini Mental State Examination), quality of live measures, i.e. EuroQoL 5D (EQ-5D) and Medical Outcome Study Short Form (SF-36) as well as the Beck Depression Inventory (BDI). In a subgroup of patients dysautonomic features are recorded in detail using the Queen Square Cardiovascular Autonomic Function Test Battery, the Composite Autonomic Symptom Scale (COMPASS) and measurements of residual urinary volume. Most of these measures are repeated at 6-monthly follow up visits for a total study period of 24 months. Surrogate markers of the disease progression are identified by the EMSA-SG using magnetic resonance and diffusion weighted imaging (MRI and DWI, respectively). Results. 412 patients have been recruited into the Registry so far. Probable MSA-P was the most common diagnosis (49% of cases). 507 patients donated DNA for research. 131 patients have been recruited into the NHS. There was a rapid deterioration of the motor disorder (in particular akinesia) by 26.1% of the UMSARS II, and - to a lesser degree - of activities of daily living by 16.8% of the UMSARS I in relation to the respective baseline scores. Motor progression was associated with low motor or global disability as well as low akinesia or cerebellar subscores at baseline. Mental function did not deteriorate during this short follow up period. Conclusion. For the first time, prospective data concerning disease progression are available. Such data about the natural history and prognosis of MSA as well as surrogate markers of disease process allow planning and implementation of multi-centre phase II/III neuroprotective intervention trials within the next years more effectively. Indeed, a trial on growth hormone in MSA has just been completed, and another on minocycline will be completed by the end of this year.
  •  
9.
  • Schrag, A, et al. (författare)
  • Health-related quality of life in multiple system atrophy
  • 2006
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 21:6, s. 809-815
  • Tidskriftsartikel (refereegranskat)abstract
    • Although multiple system atrophy (MSA) is a neurodegenerative disorder leading to progressive disability and decreased life expectancy, little is known about patients' own evaluation of their illness and factors associated with poor health-related quality of life (Hr-QoL). We, therefore, assessed Hr-QoL and its determinants in MSA. The following scales were applied to 115 patients in the European MSA-Study Group (EMSA-SG) Natural History Study: Medical Outcome Study Short Form (SF-36), EQ-513, Beck Depression Inventory (BDI), Mini-Mental state examination (MMSE), Unified MSA Rating Scale (UMSARS), Hoehn & Yahr (H&Y) Parkinson's disease staging scale, Composite Autonomic Symptom Scale (COMPASS), and Parkinson's Disease Sleep Scale (PDSS). Forty-six percent of patients had moderate to severe depression (BDI >= 17); Hr-QoL scores on the SF-36 and EQ-5D were significantly impaired. Pain, the only domain with similar scores in MSA and published PD patients, was reported more frequently in patients with MSA-P (predominantly parkinsonian motor subtype) than MSA-C (predominantly cerebellar motor subtype; 76% vs. 50%; P = 0.005). Hr-QoL scores correlated most strongly with UMSARS motor, COMPASS, and BDI scores but not with MMSE scores, age at onset, or disease duration. The COMPASS and UMSARS activities of daily living scores were moderate-to-strong predictors for the SF-36 physical summary score and the BDI and UMSARS motor scores for the SF-36 mental summary score. This report is the first study to show that Hr-QoL is significantly impaired in MSA. Although not all possible factors related to impaired Hr-QoL in MSA could be assessed, autonomic dysfunction, motor impairment, and depression were most closely associated with poor Hr-QoL, and therapeutic management, therefore, should concentrate upon these aspects of the disease. (c) 2006 Movement Disorder Society.
  •  
10.
  • Fischer, Katrin, et al. (författare)
  • The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During beta -adrenergic stimulation of brown adipose tissue (BAT), p38 phosphorylates the activating transcription factor 2 (ATF2) which then translocates to the nucleus to activate the expression of Ucp1 and Pgc-1 alpha. The mechanisms underlying ATF2 target activation are unknown. Here we demonstrate that p62 (Sqstm1) binds to ATF2 to orchestrate activation of the Ucp1 enhancer and Pgc-1 alpha promoter. P62(Delta 69-251) mice show reduced expression of Ucp1 and Pgc-1 alpha with impaired ATF2 genomic binding. Modulation of Ucp1 and Pgc-1 alpha expression through p62 regulation of ATF2 signaling is demonstrated in vitro and in vivo in p62(Delta 69-251) mice, global p62(-/-) and Ucp1-Cre p62(flx/flx) mice. BAT dysfunction resulting from p62 deficiency is manifest after birth and obesity subsequently develops despite normal food intake, intestinal nutrient absorption and locomotor activity. In summary, our data identify p62 as a master regulator of BAT function in that it controls the Ucp1 pathway through regulation of ATF2 genomic binding. Beta-adrenergic stimulation of brown adipose tissue leads to thermogenesis via the activating transcription factor 2 (ATF2) mediated expression of the thermogenic genes Ucp1 and Pgc-1 alpha. Here, the authors show that the scaffold protein p62 regulates brown adipose tissue function through modifying ATF2 genomic binding and subsequent Ucp1 and Pgc-1 alpha induction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy