SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Medina Gómez Gema) "

Sökning: WFRF:(Medina Gómez Gema)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lanzon, Borja, et al. (författare)
  • Lipidomic and Metabolomic Signature of Progression of Chronic Kidney Disease in Patients with Severe Obesity
  • 2021
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe obesity is a major risk for chronic kidney disease (CKD). Early detection and careful monitoring of renal function are critical for the prevention of CKD during obesity, since biopsies are not performed in patients with CKD and diagnosis is dependent on the assessment of clinical parameters. To explore whether distinct lipid and metabolic signatures in obesity may signify early stages of pathogenesis toward CKD, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) analyses were performed in the serum and the urine of severely obese patients with and without CKD. Moreover, the impact of bariatric surgery (BS) in lipid and metabolic signature was also studied, through LC-MS and GC-HRAM-MS analyses in the serum and urine of patients with severe obesity and CKD before and after undergoing BS. Regarding patients with severe obesity and CKD compared to severely obese patients without CKD, serum lipidome analysis revealed significant differences in lipid signature. Furthermore, serum metabolomics profile revealed significant changes in specific amino acids, with isoleucine and tyrosine, increased in CKD patients compared with patients without CKD. LC-MS and GC-HRAM-MS analysis in serum of patients with severe obesity and CKD after BS showed downregulation of levels of triglycerides (TGs) and diglycerides (DGs) as well as a decrease in branched-chain amino acid (BCAA), lysine, threonine, proline, and serine. In addition, BS removed most of the correlations in CKD patients against biochemical parameters related to kidney dysfunction. Concerning urine analysis, hippuric acid, valine and glutamine were significantly decreased in urine from CKD patients after surgery. Interestingly, bariatric surgery did not restore all the lipid species, some of them decreased, hence drawing attention to them as potential targets for early diagnosis or therapeutic intervention. Results obtained in this study would justify the use of comprehensive mass spectrometry-based lipidomics to measure other lipids aside from conventional lipid profiles and to validate possible early markers of risk of CKD in patients with severe obesity.
  •  
2.
  • Martínez-Sánchez, Noelia, et al. (författare)
  • Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance
  • 2017
  • Ingår i: Cell Metabolism. - Cambridge, MA, United States : Cell Press. - 1550-4131 .- 1932-7420. ; 26:1, s. 212-229.e12
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.
  •  
3.
  • Barbarroja, Nuria, et al. (författare)
  • Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function
  • 2015
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:4, s. 1180-1192
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipose tissue dysfunction is an important determinant of obesity-associated, lipid-induced metabolic complications. Ceramides are well-known mediators of lipid-induced insulin resistance in peripheral organs such as muscle. DEGS1 is the desaturase catalyzing the last step in the main ceramide biosynthetic pathway. Functional suppression of DEGS1 activity results in substantial changes in ceramide species likely to affect fundamental biological functions such as oxidative stress, cell survival, and proliferation. Here, we show that degs1 expression is specifically decreased in the adipose tissue of obese patients and murine models of genetic and nutritional obesity. Moreover, loss-of-function experiments using pharmacological or genetic ablation of DEGS1 in preadipocytes prevented adipogenesis and decreased lipid accumulation. This was associated with elevated oxidative stress, cellular death, and blockage of the cell cycle. These effects were coupled with increased dihydroceramide content. Finally, we validated in vivo that pharmacological inhibition of DEGS1 impairs adipocyte differentiation. These data identify DEGS1 as a new potential target to restore adipose tissue function and prevent obesity-associated metabolic disturbances.
  •  
4.
  • Carobbio, Stefania, et al. (författare)
  • Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity
  • 2013
  • Ingår i: Diabetes. - : Cell Press. - 0012-1797 .- 1939-327X. ; 62:11, s. 3697-3708
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.
  •  
5.
  • Colon-Mesa, Ignacio, et al. (författare)
  • p27Kip1 Deficiency Impairs Brown Adipose Tissue Function Favouring Fat Accumulation in Mice
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 24:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to investigate the effect of the whole-body deletion of p27 on the activity of brown adipose tissue and the susceptibility to develop obesity and glucose homeostasis disturbances in mice, especially when subjected to a high fat diet. p27 knockout (p27−/−) and wild type (WT) mice were fed a normal chow diet or a high fat diet (HFD) for 10-weeks. Body weight and composition were assessed. Insulin and glucose tolerance tests and indirect calorimetry assays were performed. Histological analysis of interscapular BAT (iBAT) was carried out, and expression of key genes/proteins involved in BAT function were characterized by qPCR and Western blot. iBAT activity was estimated by 18F-fluorodeoxyglucose (18FDG) uptake with microPET. p27−/− mice were more prone to develop obesity and insulin resistance, exhibiting increased size of all fat depots. p27−/− mice displayed a higher respiratory exchange ratio. iBAT presented larger adipocytes in p27−/− HFD mice, accompanied by downregulation of both Glut1 and uncoupling protein 1 (UCP1) in parallel with defective insulin signalling. Moreover, p27−/− HFD mice exhibited impaired response to cold exposure, characterized by a reduced iBAT 18FDG uptake and difficulty to maintain body temperature when exposed to cold compared to WT HFD mice, suggesting reduced thermogenic capacity. These data suggest that p27 could play a role in BAT activation and in the susceptibility to develop obesity and insulin resistance.
  •  
6.
  • Gurung, Iman S., et al. (författare)
  • Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia
  • 2011
  • Ingår i: Cardiovascular Research. - : Oxford University Press. - 0008-6363 .- 1755-3245. ; 92:1, s. 29-38
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β(-/-) hearts potentially associated with increased arrhythmic risk in metabolic diseases.METHODS AND RESULTS: Microarray analysis in mouse PGC1β(-/-) hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β(-/-) mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β(-/-) hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β(-/-) ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca(2+) transients, whose amplitude and frequency were increased by isoprenaline, and Ca(2+) currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K(+) currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca(2+)-calmodulin dependent protein kinase II expression.CONCLUSION: PGC1β(-/-) hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca(2+) homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
  •  
7.
  • Lelliott, Christopher J., et al. (författare)
  • Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
  • 2006
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta) has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1beta ablation was partially compensated by up-regulation of PGC-1alpha in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1betaKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1beta was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1betaKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1betaKO mice have impaired mitochondrial function. Lack of PGC-1beta also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1beta plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.
  •  
8.
  • Martínez-García, Cristina, et al. (författare)
  • Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model
  • 2012
  • Ingår i: Disease Models and Mechanisms. - : The Company of Biologists. - 1754-8403 .- 1754-8411. ; 5:5, s. 636-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.
  •  
9.
  • Medina-Gomez, Gema, et al. (författare)
  • Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome
  • 2009
  • Ingår i: Disease Models and Mechanisms. - : The Company of Biologists Ltd.. - 1754-8403 .- 1754-8411. ; 2:11-12, s. 582-592
  • Tidskriftsartikel (refereegranskat)abstract
    • The events that contribute to the expansion of beta-cell mass and enhanced beta-cell function in insulin-resistant states have not been elucidated fully. Recently, we showed that beta-cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion of beta cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the beta cells, (2) identify molecular effectors that contribute to increasing beta-cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate beta-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice, such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of beta-cell failure. Of interest, the relatively preserved lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult beta cells contribute to the failure of the POKO beta cell. Our results indicate that the rapid development of insulin resistance and beta-cell failure in POKO mice makes this model a useful tool to study early molecular events leading to insulin resistance and beta-cell failure. Furthermore, comparisons with ob/ob mice might reveal important adaptive mechanisms in beta cells with either therapeutic or diagnostic potential.
  •  
10.
  • Medina-Gomez, Gema, et al. (författare)
  • PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism
  • 2007
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/-) Lep(ob)/Lep(ob) (POKO mouse), resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of beta-cells to insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy