SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meinhardt Andrea) "

Sökning: WFRF:(Meinhardt Andrea)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnstone, Andrea L., et al. (författare)
  • Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways
  • 2021
  • Ingår i: Addiction Biology. - : WILEY. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.
  •  
2.
  • Maccari, Maria Elena, et al. (författare)
  • Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity.
  • 2023
  • Ingår i: The Journal of allergy and clinical immunology. - 1097-6825. ; 152:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking.This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS.Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs.The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS.APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
  •  
3.
  • Rust, Ruslan, et al. (författare)
  • A Practical Guide to the Automated Analysis of Vascular Growth, Maturation and Injury in the Brain
  • 2020
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The distinct organization of the brain's vasculature ensures the adequate delivery of oxygen and nutrients during development and adulthood. Acute and chronic pathological changes of the vascular system have been implicated in many neurological disorders including stroke and dementia. Here, we describe a fast, automated method that allows the highly reproducible, quantitative assessment of distinct vascular parameters and their changes based on the open source software Fiji (ImageJ). In particular, we developed a practical guide to reliably measure aspects of growth, repair and maturation of the brain's vasculature during development and neurovascular disease in mice and humans. The script can be used to assess the effects of different external factors including pharmacological treatments or disease states. Moreover, the procedure is expandable to blood vessels of other organs and vascular in vitro models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy