SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mencuccini Maurizio) "

Sökning: WFRF:(Mencuccini Maurizio)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guerrieri, Rossella, et al. (författare)
  • Substantial contribution of tree canopy nitrifiers to nitrogen fluxes in European forests
  • 2024
  • Ingår i: Nature Geoscience. - Göteborg : IVL Svenska Miljöinstitutet. - 1752-0894 .- 1752-0908. ; 17:2, s. 130-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities have greatly increased the reactive nitrogen in the biosphere, thus profoundly altering global nitrogen cycling. The large increase in nitrogen deposition over the past few decades has led to eutrophication in natural ecosystems, with negative effects on forest health and biodiversity. Recent studies, however, have reported oligotrophication in forest ecosystems, constraining their capacity as carbon sinks. Here we demonstrate the widespread biological transformation of atmospheric reactive nitrogen in the canopies of European forests by combining nitrogen deposition quantification with measurements of the stable isotopes in nitrate and molecular analyses across ten forests through August–October 2016. We estimate that up to 80% of the nitrate reaching the soil via throughfall was derived from canopy nitrification, equivalent to a flux of up to 5.76 kg N ha−1 yr−1. We also document the presence of autotrophic nitrifiers on foliar surfaces throughout European forests. Canopy nitrification thus consumes deposited ammonium and increases nitrate inputs to the soil. The results of this study highlight widespread canopy nitrification in European forests and its important contribution to forest nitrogen cycling.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Magnani, Federico, et al. (författare)
  • Ecologically implausible carbon response? Reply
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 451:7180, s. 3-4
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Mencuccini, Maurizio, et al. (författare)
  • Leaf economics and plant hydraulics drive leaf : wood area ratios
  • 2019
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 224:4, s. 1544-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value H-v (sapwood area/leaf area ratio) is central to plant water balance and drought responses. However, its coordination with key plant functional traits is poorly understood, and prevents developing trait-based prediction models. Based on theoretical arguments, we hypothesise that global patterns in H-v of terminal woody branches can be predicted from variables related to plant trait spectra, that is plant hydraulics and size and leaf economics. Using a global compilation of 1135 species-averaged H-v, we show that H-v varies over three orders of magnitude. Higher H-v are seen in short small-leaved low-specific leaf area (SLA) shrubs with low K-s in arid relative to tall large-leaved high-SLA trees with high K-s in moist environments. All traits depend on climate but climatic correlations are stronger for explanatory traits than H-v. Negative isometry is found between H-v and K-s, suggesting a compensation to maintain hydraulic supply to leaves across species. This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of above-ground biomass allocation and helps predict vegetation responses to drought.
  •  
5.
  • Mencuccini, Maurizio, et al. (författare)
  • Modelling water fluxes in plants : from tissues to biosphere
  • 2019
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 222:3, s. 1207-1222
  • Forskningsöversikt (refereegranskat)abstract
    • Models of plant water fluxes have evolved from studies focussed on understanding the detailed structure and functioning of specific components of the soil-plant-atmosphere (SPA) continuum to architectures often incorporated inside eco-hydrological and terrestrial biosphere (TB) model schemes. We review here the historical evolution of this field, examine the basic structure of a simplified individual-based model of plant water transport, highlight selected applications for specific ecological problems and conclude by examining outstanding issues requiring further improvements in modelling vegetation water fluxes. We particularly emphasise issues related to the scaling from tissue-level traits to individual-based predictions of water transport, the representation of nonlinear and hysteretic behaviour in soil-xylem hydraulics and the need to incorporate knowledge of hydraulics within broader frameworks of plant ecological strategies and their consequences for predicting community demography and dynamics.
  •  
6.
  • Rowland, Lucy, et al. (författare)
  • Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics
  • 2018
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 106:4, s. 1673-1682
  • Tidskriftsartikel (refereegranskat)abstract
    • Litterfall dynamics in tropical forests are a good indicator of overall tropical forest function, indicative of carbon invested in both photosynthesising tissues and reproductive organs such as flowers and fruits. These dynamics are sensitive to changes in climate, such as drought, but little is known about the long-term responses of tropical forest litterfall dynamics to extended drought stress. We present a 15-year dataset of litterfall (leaf, flower and fruit, and twigs) from the world's only long-running drought experiment in tropical forest. This dataset comprises one of the longest published litterfall time series in natural forest, which allows the long-term effects of drought on forest reproduction and canopy investment to be explored. Over the first 4 years of the experiment, the experimental soil moisture deficit created only a small decline in total litterfall and leaf fall (12% and 13%, respectively), but a very strong initial decline in reproductive litterfall (flowers and fruits) of 54%. This loss of flowering and fruiting was accompanied by a de-coupling of all litterfall patterns from seasonal climate variables. However, following >10 years of the experimental drought, flower and fruiting re-stabilised at levels greater than in the control plot, despite high tree mortality in the drought plot. Litterfall relationships with atmospheric drivers were re-established alongside a strong new apparent trade-off between litterfall and tree growth. Synthesis. We demonstrate that this tropical forest went through an initial shock response during the first 4 years of intense drought, where reproductive effort was arrested and seasonal litterfall patterns were lost. However, following >10 years of experimental drought, this system appears to be re-stabilising at a new functional state where reproduction is substantially elevated on a per tree basis; and there is a new strong trade-off between investment in canopy production and wood production.
  •  
7.
  • Tavares, Julia, et al. (författare)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Manzoni, Stefano (3)
Malhi, Yadvinder (2)
Phillips, Oliver L. (2)
Peñuelas, Josep (2)
Diaz, Sandra (1)
Ostonen, Ivika (1)
visa fler...
Tedersoo, Leho (1)
Bond-Lamberty, Ben (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Lindroth, Anders (1)
Turroni, Silvia (1)
Isaac, Marney (1)
Lewis, Simon L. (1)
Baker, Timothy R. (1)
Zieminska, Kasia (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Hellsten, Sofie (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Wellstein, Camilla (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Rillig, Matthias C. (1)
Tappeiner, Ulrike (1)
Casamayor, Emilio O. (1)
MARQUES, MARCIA (1)
Jactel, Hervé (1)
Castagneyrol, Bastie ... (1)
Scherer-Lorenzen, Mi ... (1)
van der Plas, Fons (1)
Cromsigt, Joris (1)
Jenkins, Thomas (1)
Boeckx, Pascal (1)
Cornelissen, Hans (1)
Estiarte, Marc (1)
Jentsch, Anke (1)
Reich, Peter B (1)
Le Roux, Peter C. (1)
Merilä, Päivi (1)
Baker, William J. (1)
visa färre...
Lärosäte
Stockholms universitet (3)
Lunds universitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy